United Nations, Department of Economic and Social Affairs & Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). (United Nations, 2019).
Wei, Y. D. & Ewing, R. Urban expansion, sprawl and inequality. Landsc. Urban Plan. 177, 259–265. https://doi.org/10.1016/j.landurbplan.2018.05.021 (2018).
Google Scholar
Ayers, A. C. & Rehan, S. M. Supporting bees in cities: How bees are influenced by local and landscape features. Insects 12 (2021).
Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760. https://doi.org/10.1126/science.1150195 (2008).
Google Scholar
Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419 (2003).
Google Scholar
Shochat, E. et al. Invasion, competition, and biodiversity loss in urban ecosystems. Bioscience 60, 199–208. https://doi.org/10.1525/bio.2010.60.3.6 (2010).
Google Scholar
Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Cons. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).
Google Scholar
Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674. https://doi.org/10.1038/s41586-019-1684-3 (2019).
Google Scholar
Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480. https://doi.org/10.1146/annurev-ento-011019-025151 (2020).
Google Scholar
Brown, M. J. & Paxton, R. J. The conservation of bees: A global perspective. Apidologie 40, 410–416 (2009).
Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).
Google Scholar
Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).
Google Scholar
Potts, S. G. et al. Summary for policymakers of the assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. (2016).
Winfree, R., Aguilar, R., Vázquez, D. P., LeBuhn, G. & Aizen, M. A. A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90, 2068–2076 (2009).
Google Scholar
Millard, J. et al. Global effects of land-use intensity on local pollinator biodiversity. Nat. Commun. 12, 1–11 (2021).
Google Scholar
Baldock, K. C. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evolut. 3, 363–373 (2019).
Banaszak-Cibicka, W., Twerd, L., Fliszkiewicz, M., Giejdasz, K. & Langowska, A. City parks vs. natural areas—Is it possible to preserve a natural level of bee richness and abundance in a city park?. Urban Ecosyst. 21, 599–613 (2018).
Hall, D. M. et al. The city as a refuge for insect pollinators. Conserv. Biol. 31, 24–29 (2017).
Google Scholar
Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 1–13 (2020).
Wilson, C. J. & Jamieson, M. A. The effects of urbanization on bee communities depends on floral resource availability and bee functional traits. PLoS ONE 14, e0225852 (2019).
Google Scholar
Samuelson, A. E., Schürch, R. & Leadbeater, E. Dancing bees evaluate central urban forage resources as superior to agricultural land. J. Appl. Ecol. 59, 79–88 (2022).
Fortel, L. et al. Decreasing abundance, increasing diversity and changing structure of the wild bee community (Hymenoptera: Anthophila) along an urbanization gradient. PLoS ONE 9, e104679 (2014).
Google Scholar
Roffet-Salque, M. et al. Widespread exploitation of the honeybee by early Neolithic farmers. Nature 527, 226–230 (2015).
Google Scholar
Crane, E. Recent research on the world history of beekeeping. Bee World 80, 174–186 (1999).
Dietemann, V., Pirk, C. W. W. & Crewe, R. Is there a need for conservation of honeybees in Africa?. Apidologie 40, 285–295 (2009).
Jaffe, R. et al. Estimating the density of honeybee colonies across their natural range to fill the gap in pollinator decline censuses. Conserv. Biol. 24, 583–593 (2010).
Google Scholar
Browne, K. A. et al. Investigation of free-living honey bee colonies in Ireland. J. Apic. Res. 60, 229–240. https://doi.org/10.1080/00218839.2020.1837530 (2021).
Google Scholar
Kohl, P. L. & Rutschmann, B. The neglected bee trees: European beech forests as a home for feral honey bee colonies. PeerJ 6, e4602 (2018).
Google Scholar
Oleksa, A., Gawroński, R. & Tofilski, A. Rural avenues as a refuge for feral honey bee population. J. Insect Conserv. 17, 465–472 (2013).
Rutschmann, B., Kohl, P. L., Machado, A. & Steffan-Dewenter, I. Semi-natural habitats promote winter survival of wild-living honeybees in an agricultural landscape. Biol. Cons. 266, 109450 (2022).
Thompson, C. E., Biesmeijer, J. C., Allnutt, T. R., Pietravalle, S. & Budge, G. E. Parasite pressures on feral honey bees (Apis mellifera sp). PLoS ONE 9, e105164 (2014).
Google Scholar
Bila Dubaić, J. et al. Unprecedented density and persistence of feral honey bees in urban environments of a large SE-European City (Belgrade, Serbia). Insects 12, 1127 (2021).
Google Scholar
Alaux, C., Le Conte, Y. & Decourtye, A. Pitting wild bees against managed honey bees in their native range, a losing strategy for the conservation of honey bee biodiversity. Front. Ecol. Evol. 7, 60 (2019).
Requier, F. et al. The conservation of native honey bees is crucial. Trends Ecol. Evol. 34, 789–798 (2019).
Google Scholar
Mladenović, S. et al. Environment in Belgrade in 2018. (in Serbian: Kvalitet životne sredine u Beogradu u 2018. godini). (The City Administration, Secretariat for Environmental Protection, 2019).
Statistical Office of the Republic of Serbia. https://data.stat.gov.rs/Home/Result/130202010207?languageCode=en-US.
(“The Official Gazette of the Republic of Serbia”, Nos. 41/2009, 93/2012 and 14/2106 [In Serbian], 2009).
Johnson, M. T. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).
Google Scholar
Jara, L. et al. Stable genetic diversity despite parasite and pathogen spread in honey bee colonies. Sci. Nat. 102, 1–8 (2015).
Tanasković, M. et al. MtDNA analysis indicates human-induced temporal changes of serbian honey bees diversity. Insects 12, 767 (2021).
Google Scholar
Wang, J. COANCESTRY: A program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 11, 141–145. https://doi.org/10.1111/j.1755-0998.2010.02885.x (2011).
Google Scholar
Wang, J. Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet. Res. 89, 135–153. https://doi.org/10.1017/s0016672307008798 (2007).
Google Scholar
Jacobson, S. Locally adapted, varroa resistant honey bees: ideas from several key studies. Am. Bee J. (2010).
McNeely, J. A., Miller, K. R., Reid, W. V., Mettermeier, R. A. & Werner, T. B. Conserving the world’s biological diversity. (UICN, Morges (Suiza) WRI, Washington DC (EUA) CI, Washington DC (EUA) WWF …, 1990).
Hoban, S. M. et al. Bringing genetic diversity to the forefront of conservation policy and management. Conserv. Genet. Resour. 5, 593–598 (2013).
Hohenlohe, P. A., Funk, W. C. & Rajora, O. P. Population genomics for wildlife conservation and management. Mol. Ecol. 30, 62–82 (2021).
Google Scholar
Shafer, A. B. et al. Genomics and the challenging translation into conservation practice. Trends Ecol. Evol. 30, 78–87 (2015).
Google Scholar
Mattila, H. R. & Seeley, T. D. Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317, 362–364 (2007).
Google Scholar
Oddie, M. A. & Dahle, B. Insights from Norway: Using natural adaptation to breed Varroa-resistant honey bees. Bee World 98, 38–43 (2021).
Oddie, M. A., Dahle, B. & Neumann, P. Norwegian honey bees surviving Varroa destructor mite infestations by means of natural selection. PeerJ 5, e3956 (2017).
Google Scholar
Oldroyd, B. P. & Fewell, J. H. Genetic diversity promotes homeostasis in insect colonies. Trends Ecol. Evol. 22, 408–413 (2007).
Google Scholar
Tarpy, D. R. Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proc. R Soc. Lond. Series B Biol. Sci. 270, 99–103 (2003).
van Baalen, M. & Beekman, M. The costs and benefits of genetic heterogeneity in resistance against parasites in social insects. Am. Nat. 167, 568–577 (2006).
Google Scholar
Eckholm, B. J., Anderson, K. E., Weiss, M. & DeGrandi-Hoffman, G. Intracolonial genetic diversity in honeybee (Apis mellifera) colonies increases pollen foraging efficiency. Behav. Ecol. Sociobiol. 65, 1037–1044 (2011).
Graham, S., Myerscough, M., Jones, J. & Oldroyd, B. Modelling the role of intracolonial genetic diversity on regulation of brood temperature in honey bee (Apis mellifera L.) colonies. Insectes Soc. 53, 226–232 (2006).
Jones, J. C., Myerscough, M. R., Graham, S. & Oldroyd, B. P. Honey bee nest thermoregulation: Diversity promotes stability. Science 305, 402–404 (2004).
Google Scholar
Tanasković, M. et al. Further evidence of population admixture in the Serbian honey bee population. Insects 13, 180 (2022).
Google Scholar
Nedić, N. et al. Detecting population admixture in honey bees of Serbia. J. Apic. Res. 53, 303–313. https://doi.org/10.3896/IBRA.1.53.2.12 (2014).
Google Scholar
Nedić, N., Stanisavljević, L., Mladenović, M. & Stanisavljević, J. Molecular characterization of the honeybee Apis mellifera carnica in Serbia. Arch. Biol. Sci. 61, 587–598 (2009).
Kükrer, M., Kence, M. & Kence, A. Honey bee diversity is swayed by migratory beekeeping and trade despite conservation practices: Genetic evidence for the impact of anthropogenic factors on population structure. Front. Ecol. Evolut. 9 (2021).
Bouga, M., Harizanis, P. C., Kilias, G. & Alahiotis, S. Genetic divergence and phylogenetic relationships of honey bee Apis mellifera (Hymenoptera: Apidae) populations from Greece and Cyprus using PCR–RFLP analysis of three mtDNA segments. Apidologie 36, 335–344 (2005).
Google Scholar
Dall’Olio, R., Marino, A., Lodesani, M. & Moritz, R. F. Genetic characterization of Italian honeybees, Apis mellifera ligustica, based on microsatellite DNA polymorphisms. Apidologie 38, 207–217 (2007).
Google Scholar
Neumann, P. & Blacquière, T. The Darwin cure for apiculture? Natural selection and managed honeybee health. Evol. Appl. 10, 226–230 (2017).
Google Scholar
Kulinčević, J., Rinderer, T., Mladjan, V. & Buco, S. Five years of bi-directional genetic selection for honey bees resistant and susceptible to Varroa jacobsoni. Apidologie 23, 443–452 (1992).
2011 Census of Population, Households and Dwellings in the Republic of Serbia: Comparative Overview of the Number of Population in 1948, 1953, 1961, 1971, 1981, 1991, 2002 and 2011. (Statistical Office of the Republic of Serbia, 2014).
Techer, M. A. et al. Large-scale mitochondrial DNA analysis of native honey bee Apis mellifera populations reveals a new African subgroup private to the South West Indian Ocean islands. BMC Genet. 18, 1–21 (2017).
Garnery, L., Cornuet, J. M. & Solignac, M. Evolutionary history of the honey bee Apis mellifera inferred from mitochondrial DNA analysis. Mol. Ecol. 1, 145–154 (1992).
Google Scholar
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547 (2018).
Google Scholar
Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resources. 10, 564–567 (2010).
Kalinowski, S. T. hp-rare 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes. 5, 187–189 (2005).
Google Scholar
Stoneking, M., Hedgecock, D., Higuchi, R. G., Vigilant, L. & Erlich, H. A. Population variation of human mtDNA control region sequences detected by enzymatic amplification and sequence-specific oligonucleotide probes. Am. J. Hum. Genet. 48, 370 (1991).
Google Scholar
Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
Crozier, R. & Crozier, Y. The mitochondrial genome of the honeybee Apis mellifera: Complete sequence and genome organization. Genetics 133, 97–117 (1993).
Google Scholar
Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164, 1567–1587. https://doi.org/10.1093/genetics/164.4.1567 (2003).
Google Scholar
Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol. Ecol. Notes 7, 574–578 (2007).
Google Scholar
Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332. https://doi.org/10.1111/j.1755-0998.2009.02591.x (2009).
Google Scholar
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
Google Scholar
Earl, D. A. & VonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
Google Scholar
Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94. https://doi.org/10.1186/1471-2156-11-94 (2010).
Google Scholar
Ward, J. H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244. https://doi.org/10.1080/01621459.1963.10500845 (1963).
Google Scholar
Wang, J. An estimator for pairwise relatedness using molecular markers. Genetics 160, 1203–1215. https://doi.org/10.1093/genetics/160.3.1203 (2002).
Google Scholar
Li, C. C., Weeks, D. E. & Chakravarti, A. Similarity of DNA fingerprints due to chance and relatedness. Hum. Hered. 43, 45–52. https://doi.org/10.1159/000154113 (1993).
Google Scholar
Lynch, M. Estimation of relatedness by DNA fingerprinting. Mol. Biol. Evol. 5, 584–599. https://doi.org/10.1093/oxfordjournals.molbev.a040518 (1988).
Google Scholar
Lynch, M. & Ritland, K. Estimation of pairwise relatedness with molecular markers. Genetics 152, 1753–1766. https://doi.org/10.1093/genetics/152.4.1753 (1999).
Google Scholar
Ritland, K. Estimators for pairwise relatedness and individual inbreeding coefficients. Genet. Res. 67, 175–185 (1996).
Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 43, 258–275. https://doi.org/10.1111/j.1558-5646.1989.tb04226.x (1989).
Google Scholar
Milligan, B. G. Maximum-likelihood estimation of relatedness. Genetics 163, 1153–1167 (2003).
Google Scholar
del Felipe, P. et al. Genetic diversity and structure of the commercially important native fish pacu (Piaractus mesopotamicus) from cultured and wild fish populations: Relevance for broodstock management. Aquacult. Int. 29, 289–305. https://doi.org/10.1007/s10499-020-00626-w (2021).
Google Scholar
Source: Ecology - nature.com