in

Abiotic conditions shape spatial and temporal morphological variation in North American birds

  • Dehling, D. M., Jordano, P., Schaefer, H. M., Böhning-Gaese, K. & Schleuning, M. Morphology predicts species’ functional roles and their degree of specialization in plant–frugivore interactions. Proc. R. Soc. B 283, 20152444 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Grant, P. R. Inheritance of size and shape in a population of Darwin’s finches, Geospiza conirostris. Proc. R. Soc. Lond. B 220, 219–236 (1983).

    Google Scholar 

  • Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).

    PubMed 

    Google Scholar 

  • Bergmann, C. Über die verhältnisse der wärmeökonomie der thiere zu ihrer grösse. Gött. Stud. 3, 595–708 (1847).

    Google Scholar 

  • Allen, J. A. The influence of physical conditions in the genesis of species. Radic. Rev. 1, 108–140 (1877).

    Google Scholar 

  • Altshuler, D. L. & Dudley, R. The physiology and biomechanics of avian flight at high altitude. Integr. Comp. Biol. 46, 62–71 (2006).

    PubMed 

    Google Scholar 

  • Teplitsky, C. & Millien, V. Climate warming and Bergmann’s rule through time: is there any evidence? Evol. Appl. 7, 156–168 (2014).

    PubMed 

    Google Scholar 

  • Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).

    PubMed 

    Google Scholar 

  • Yom-Tov, Y., Yom-Tov, S., Wright, J., Thorne, C. J. R. & Du Feu, R. Recent changes in body weight and wing length among some British passerine birds. Oikos 112, 91–101 (2006).

    Google Scholar 

  • Van Buskirk, J., Mulvihill, R. S. & Leberman, R. C. Declining body sizes in North American birds associated with climate change. Oikos 119, 1047–1055 (2010).

    Google Scholar 

  • Weeks, B. C. et al. Shared morphological consequences of global warming in North American migratory birds. Ecol. Lett. 23, 316–325 (2020).

    PubMed 

    Google Scholar 

  • Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • DeSante, D. F., Saracco, J. F., O’Grady, D. R., Burton, K. M. & Walker, B. L. Methodological considerations of the Monitoring Avian Productivity and Survivorship (MAPS) program. Stud. Avian Biol. 29, 28–45 (2004).

  • West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Jirinec, V. et al. Morphological consequences of climate change for resident birds in intact Amazonian rainforest. Sci. Adv. 7, eabk1743 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dubiner, S. & Meiri, S. Widespread recent changes in morphology of Old World birds, global warming the immediate suspect. Glob. Ecol. Biogeogr. 31, 791–801 (2022).

    Google Scholar 

  • Ballinger, M. A. & Nachman, M. W. The contribution of genetic and environmental effects to Bergmann’s rule and Allen’s rule in house mice. Am. Nat. https://doi.org/10.1086/719028 (2022).

  • Andrew, S. C., Hurley, L. L., Mariette, M. M. & Griffith, S. C. Higher temperatures during development reduce body size in the zebra finch in the laboratory and in the wild. J. Evol. Biol. 30, 2156–2164 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Siepielski, A. M. et al. No evidence that warmer temperatures are associated with selection for smaller body sizes. Proc. R. Soc. B 286, 20191332 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Salewski, V., Siebenrock, K.-H., Hochachka, W. M., Woog, F. & Fiedler, W. Morphological change to birds over 120 years is not explained by thermal adaptation to climate change. PLoS ONE 9, e101927 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Riddell, E. A., Iknayan, K. J., Wolf, B. O., Sinervo, B. & Beissinger, S. R. Cooling requirements fueled the collapse of a desert bird community from climate change. Proc. Natl Acad. Sci. USA 116, 21609–21615 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    PubMed 

    Google Scholar 

  • Futuyma, D. J. Evolutionary constraint and ecological consequences. Evolution 64, 1865–1884 (2010).

    PubMed 

    Google Scholar 

  • Murren, C. J. et al. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity 115, 293–301 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rollinson, C. R. et al. Working across space and time: nonstationarity in ecological research and application. Front. Ecol. Environ. 19, 66–72 (2021).

    Google Scholar 

  • Riemer, K., Guralnick, R. P. & White, E. P. No general relationship between mass and temperature in endothermic species. eLife 7, e27166 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ryding, S., Klaassen, M., Tattersall, G. J., Gardner, J. L. & Symonds, M. R. Shape-shifting: changing animal morphologies as a response to climatic warming. Trends Ecol. Evol. 36, 1036–1048 (2021).

    PubMed 

    Google Scholar 

  • Baldwin, M. W., Winkler, H., Organ, C. L. & Helm, B. Wing pointedness associated with migratory distance in common-garden and comparative studies of stonechats (Saxicola torquata). J. Evol. Biol. 23, 1050–1063 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Förschler, M. I. & Bairlein, F. Morphological shifts of the external flight apparatus across the range of a passerine (Northern Wheatear) with diverging migratory behaviour. PLoS ONE 6, e18732 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Macpherson, M. P., Jahn, A. E. & Mason, N. A. Morphology of migration: associations between wing shape, bill morphology and migration in kingbirds (Tyrannus). Biol. J. Linn. Soc. 135, 71–83 (2022).

    Google Scholar 

  • Newton, I. The Migration Ecology of Birds (Elsevier, 2010).

  • Clegg, S. M., Kelly, J. F., Kimura, M. & Smith, T. B. Combining genetic markers and stable isotopes to reveal population connectivity and migration patterns in a neotropical migrant, Wilson’s warbler (Wilsonia pusilla). Mol. Ecol. 12, 819–830 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Bell, C. P. Leap-frog migration in the fox sparrow: minimizing the cost of spring migration. Condor 99, 470–477 (1997).

    Google Scholar 

  • Billerman, S., Keeney, B., Rodewald, P. & Schulenberg, T. (eds) Birds of the World (Cornell Laboratory of Ornithology, 2020).

  • Desrochers, A. Morphological response of songbirds to 100 years of landscape change in North America. Ecology 91, 1577–1582 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Swaddle, J. P. & Lockwood, R. Morphological adaptations to predation risk in passerines. J. Avian Biol. 29, 172–176 (1998).

    Google Scholar 

  • Chown, S. L. & Klok, C. J. Altitudinal body size clines: latitudinal effects associated with changing seasonality. Ecography 26, 445–455 (2003).

    Google Scholar 

  • Hsiung, A. C., Boyle, W. A., Cooper, R. J. & Chandler, R. B. Altitudinal migration: ecological drivers, knowledge gaps, and conservation implications: animal altitudinal migration review. Biol. Rev. 93, 2049–2070 (2018).

    PubMed 

    Google Scholar 

  • Barras, A. G., Liechti, F. & Arlettaz, R. Seasonal and daily movement patterns of an alpine passerine suggest high flexibility in relation to environmental conditions. J. Avian Biol. 52, jav.02860 (2021).

    Google Scholar 

  • Spence, A. R. & Tingley, M. W. Body size and environment influence both intraspecific and interspecific variation in daily torpor use across hummingbirds. Funct. Ecol. 35, 870–883 (2021).

    CAS 

    Google Scholar 

  • Moreau, R. E. Variation in the western Zosteropidae (Aves). Bull. Br. Mus. Nat. Hist. Zool. 4, 311–433 (1957).

    Google Scholar 

  • Hamilton, T. H. The adaptive significances of intraspecific trends of variation in wing length and body size among bird species. Evolution 15, 180–194 (1961).

    Google Scholar 

  • Hodkinson, I. D. Terrestrial insects along elevation gradients: species and community responses to altitude. Biol. Rev. 80, 489–513 (2005).

    PubMed 

    Google Scholar 

  • Feinsinger, P., Colwell, R. K., Terborgh, J. & Chaplin, S. B. Elevation and the morphology, flight energetics, and foraging ecology of tropical hummingbirds. Am. Nat. 113, 481–497 (1979).

    Google Scholar 

  • Aldrich, J. W. Ecogeographical Variation in Size and Proportions of Song Sparrows (Melospiza melodia) (American Ornithological Society, 1984).

  • Sun, Y. et al. The role of climate factors in geographic variation in body mass and wing length in a passerine bird. Avian Res. 8, 1 (2017).

  • Des Roches, S., Pendleton, L. H., Shapiro, B. & Palkovacs, E. P. Conserving intraspecific variation for nature’s contributions to people. Nat. Ecol. Evol. 5, 574–582 (2021).

    PubMed 

    Google Scholar 

  • McKechnie, A. E. & Wolf, B. O. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol. Lett. 6, 253–256 (2010).

    PubMed 

    Google Scholar 

  • Conradie, S. R., Woodborne, S. M., Cunningham, S. J. & McKechnie, A. E. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century. Proc. Natl Acad. Sci. USA 116, 14065–14070 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Riddell, E. A. et al. Exposure to climate change drives stability or collapse of desert mammal and bird communities. Science 371, 633–636 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl Acad. Sci. USA 106, 19637–19643 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Youngflesh, C. et al. Migratory strategy drives species-level variation in bird sensitivity to vegetation green-up. Nat. Ecol. Evol. 5, 987–994 (2021).

    PubMed 

    Google Scholar 

  • Blueweiss, L. et al. Relationships between body size and some life history parameters. Oecologia 37, 257–272 (1978).

    CAS 
    PubMed 

    Google Scholar 

  • Kleiber, M. Body size and metabolic rate. Physiol. Rev. 27, 511–541 (1947).

    CAS 
    PubMed 

    Google Scholar 

  • Yodzis, P. & Innes, S. Body size and consumer-resource dynamics. Am. Nat. 139, 1151–1175 (1992).

    Google Scholar 

  • Prum, R. O. Interspecific social dominance mimicry in birds: social mimicry in birds. Zool. J. Linn. Soc. 172, 910–941 (2014).

    Google Scholar 

  • Pyle, P. Identification Guide to North American Birds: A Compendium of Information on Identifying, Ageing, and Sexing ‘Near-Passerines’ and Passerines in the Hand (Slate Creek Press, 1997).

  • Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49, 764–766 (2013).

    Google Scholar 

  • Danielson, J. J. & Gesch, D. B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) (US Geological Survey, 2011).

  • Thornton, M. M. et al. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 4 (ORNL Distributed Active Archive Center, 2020).

  • Greenewalt, C. H. The flight of birds: the significant dimensions, their departure from the requirements for dimensional similarity, and the effect on flight aerodynamics of that departure. Trans. Am. Philos. Soc. 65, 1–67 (1975).

    Google Scholar 

  • Longo, G. & Montévil, M. Perspectives on Organisms: Biological Time, Symmetries, and Singularities (Springer, 2014).

  • Harvey, P. H. in Scaling in Biology (eds Brown, J. H. & West, G. B.) 253–265 (Oxford Univ. Press, 2000).

  • Orme, D. et al. The caper package: comparative analysis of phylogenetics and evolution in R. R package version 5 (2013).

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  • Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Nudds, R. L., Kaiser, G. W. & Dyke, G. J. Scaling of avian primary feather length. PLoS ONE 6, e15665 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nudds, R. Wing-bone length allometry in birds. J. Avian Biol. 38, 515–519 (2007).

    Google Scholar 

  • Anderson, S. C., Branch, T. A., Cooper, A. B. & Dulvy, N. K. Black-swan events in animal populations. Proc. Natl Acad. Sci. USA 114, 3252–3257 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stan Modeling Language Users Guide and Reference Manual, Version 2.18.0 (Stan Development Team, 2018); http://mc-stan.org

  • Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).

  • Youngflesh, C. MCMCvis: tools to visualize, manipulate, and summarize MCMC output. J. Open Source Softw. 3, 640 (2018).

    Google Scholar 

  • Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Google Scholar 

  • Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Stat. Soc. A 182, 389–402 (2019).

    Google Scholar 

  • McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (Chapman and Hall/CRC, 2018).

  • Data Zone (BirdLife International, 2019); http://datazone.birdlife.org/species/requestdis

  • Cramp, S. & Brooks, D. Handbook of the Birds of Europe, the Middle East and North Africa. The Birds of the Western Palearctic, Vol. VI. Warblers (Oxford Univ. Press, 1992).

  • Che-Castaldo, J., Che-Castaldo, C. & Neel, M. C. Predictability of demographic rates based on phylogeny and biological similarity. Conserv. Biol. 32, 1290–1300 (2018).

    PubMed 

    Google Scholar 

  • Villemereuil, P., de, Wells, J. A., Edwards, R. D. & Blomberg, S. P. Bayesian models for comparative analysis integrating phylogenetic uncertainty. BMC Evol. Biol. 12, 102 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Google Scholar 

  • Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Hendry, A. P. & Kinnison, M. T. Perspective: the pace of modern life: measuring rates of contemporary microevolution. Evolution 53, 1637–1653 (1999).

    PubMed 

    Google Scholar 

  • Gingerich, P. Rates of evolution: effects of time and temporal scaling. Science 222, 159–162 (1983).

    CAS 
    PubMed 

    Google Scholar 

  • Bird, J. P. et al. Generation lengths of the world’s birds and their implications for extinction risk. Conserv. Biol. 34, 1252–1261 (2020).

  • Gingerich, P. D. Rates of evolution. Annu. Rev. Ecol. Evol. Syst. 40, 657–675 (2009).

    Google Scholar 

  • Bürger, R. & Lynch, M. Evolution and extinction in a changing environment: a quantitative-genetic analysis. Evolution 49, 151–163 (1995).

    PubMed 

    Google Scholar 

  • Hendry, A. P., Farrugia, T. J. & Kinnison, M. T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 17, 20–29 (2008).

    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Coordinating climate and air-quality policies to improve public health

    Pesticide innovation takes top prize at Collegiate Inventors Competition