in

Evapotranspiration frequently increases during droughts

  • Ault, T. R. On the essentials of drought in a changing climate. Science 368, 256–260 (2020).

    CAS 

    Google Scholar 

  • Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).

    CAS 

    Google Scholar 

  • Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).

    CAS 

    Google Scholar 

  • Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).

    CAS 

    Google Scholar 

  • Goulden, M. L. & Bales, R. C. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12, 632–637 (2019).

    CAS 

    Google Scholar 

  • Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).

    CAS 

    Google Scholar 

  • Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).

    CAS 

    Google Scholar 

  • Short Gianotti, D. J., Rigden, A. J., Salvucci, G. D. & Entekhabi, D. Satellite and station observations demonstrate water availability’s effect on continental-scale evaporative and photosynthetic land surface dynamics. Water Resour. Res. 55, 540–554 (2019).

    Google Scholar 

  • Anderegg, W. R. L., Trugman, A. T., Bowling, D. R., Salvucci, G. & Tuttle, S. E. Plant functional traits and climate influence drought intensification and land–atmosphere feedbacks. Proc. Natl Acad. Sci. USA 116, 14071–14076 (2019).

    CAS 

    Google Scholar 

  • Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).

    CAS 

    Google Scholar 

  • Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Chang. 6, 1023–1027 (2016).

    CAS 

    Google Scholar 

  • Liu, Y., Kumar, M., Katul, G. G., Feng, X. & Konings, A. G. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim. Chang. 10, 691–695 (2020).

    CAS 

    Google Scholar 

  • Gupta, A., Rico-Medina, A. & Caño-Delgado, A. I. The physiology of plant responses to drought. Science 368, 266–269 (2020).

    CAS 

    Google Scholar 

  • Wolf, S. et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl Acad. Sci. USA 113, 5880–5885 (2016).

    CAS 

    Google Scholar 

  • Teuling, A. J. et al. Evapotranspiration amplifies European summer drought. Geophys. Res. Lett. 40, 2071–2075 (2013).

    Google Scholar 

  • Mastrotheodoros, T. et al. More green and less blue water in the Alps during warmer summers. Nat. Clim. Chang. 10, 155–161 (2020).

    Google Scholar 

  • Peterson, T. J., Saft, M., Peel, M. C. & John, A. Watersheds may not recover from drought. Science 372, 745–749 (2021).

    CAS 

    Google Scholar 

  • Helbig, M. et al. Increasing contribution of peatlands to boreal evapotranspiration in a warming climate. Nat. Clim. Chang. 10, 555–560 (2020).

    CAS 

    Google Scholar 

  • Massmann, A., Gentine, P. & Lin, C. When does vapor pressure deficit drive or reduce evapotranspiration? J. Adv. Model. Earth Syst. 11, 3305–3320 (2019).

    Google Scholar 

  • Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).

    Google Scholar 

  • Orth, R. & Destouni, G. Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe. Nat. Commun. 9, 3602 (2018).

    Google Scholar 

  • Pendergrass, A. G. et al. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Chang. 10, 191–199 (2020).

    Google Scholar 

  • Chu, H., Baldocchi, D. D., John, R., Wolf, S. & Reichstein, M. Fluxes all of the time? A primer on the temporal representativeness of FLUXNET. J. Geophys. Res. Biogeosci. 122, 289–307 (2017).

    Google Scholar 

  • Ukkola, A. M. et al. Land surface models systematically overestimate the intensity, duration and magnitude of seasonal-scale evaporative droughts. Environ. Res. Lett. 11, 104012 (2016).

    Google Scholar 

  • Trugman, A. T., Medvigy, D., Mankin, J. S. & Anderegg, W. R. L. Soil moisture stress as a major driver of carbon cycle uncertainty. Geophys. Res. Lett. 45, 6495–6503 (2018).

    Google Scholar 

  • De Kauwe, M. G. et al. Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic–xeric gradient in Europe. Biogeosciences 12, 7503–7518 (2015).

    Google Scholar 

  • Dong, J., Lei, F. & Crow, W. T. Land transpiration–evaporation partitioning errors responsible for modeled summertime warm bias in the central United States. Nat. Commun. 13, 336 (2022).

    CAS 

    Google Scholar 

  • Kennedy, D. et al. Implementing plant hydraulics in the Community Land Model, version 5. J. Adv. Model. Earth Syst. 11, 485–513 (2019).

    Google Scholar 

  • Novick, K. A. et al. Confronting the water potential information gap. Nat. Geosci. 15, 158–164 (2022).

    CAS 

    Google Scholar 

  • Liu, Y., Holtzman, N. M. & Konings, A. G. Global ecosystem-scale plant hydraulic traits retrieved using model–data fusion. Hydrol. Earth Syst. Sci. 25, 2399–2417 (2021).

    CAS 

    Google Scholar 

  • Lin, Y.-S. et al. Optimal stomatal behaviour around the world. Nat. Clim. Chang. 5, 459–464 (2015).

    CAS 

    Google Scholar 

  • Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).

    CAS 

    Google Scholar 

  • Anderegg, W. R. L. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).

    CAS 

    Google Scholar 

  • Lehmann, P., Merlin, O., Gentine, P. & Or, D. Soil texture effects on surface resistance to bare-soil evaporation. Geophys. Res. Lett. 45, 10398–10405 (2018).

    Google Scholar 

  • Fatichi, S. et al. Soil structure is an important omission in Earth System Models. Nat. Commun. 11, 522 (2020).

    CAS 

    Google Scholar 

  • McCormick, E. L. et al. Widespread woody plant use of water stored in bedrock. Nature 597, 225–229 (2021).

    CAS 

    Google Scholar 

  • Baldocchi, D., Ma, S. & Verfaillie, J. On the inter- and intra-annual variability of ecosystem evapotranspiration and water use efficiency of an oak savanna and annual grassland subjected to booms and busts in rainfall. Glob. Chang. Biol. 27, 359–375 (2021).

    CAS 

    Google Scholar 

  • Condon, L. E., Atchley, A. L. & Maxwell, R. M. Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat. Commun. 11, 873 (2020).

    CAS 

    Google Scholar 

  • Maxwell, R. M. & Condon, L. E. Connections between groundwater flow and transpiration partitioning. Science 353, 377–380 (2016).

    CAS 

    Google Scholar 

  • Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).

    CAS 

    Google Scholar 

  • Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).

    CAS 

    Google Scholar 

  • Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).

    CAS 

    Google Scholar 

  • Zhao, M. et al. Ecological restoration impact on total terrestrial water storage. Nat. Sustain. 4, 56–62 (2021).

    Google Scholar 

  • Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 6, 1019–1022 (2016).

    Google Scholar 

  • Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).

    CAS 

    Google Scholar 

  • Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).

    CAS 

    Google Scholar 

  • Zhao, M., Geruo, A., Velicogna, I. & Kimball, J. S. A global gridded dataset of GRACE drought severity index for 2002–14: comparison with PDSI and SPEI and a case study of the Australia Millennium Drought. J. Hydrometeorol. 18, 2117–2129 (2017).

    Google Scholar 

  • Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120, 2648–2671 (2015).

    Google Scholar 

  • Wiese, D. N., Landerer, F. W. & Watkins, M. M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour. Res. 52, 7490–7502 (2016).

    Google Scholar 

  • Adler, R. F. et al. The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 4, 1147–1167 (2003).

    Google Scholar 

  • Sun, Q. et al. A review of global precipitation data sets: data sources, estimation, and intercomparisons. Rev. Geophys. 56, 79–107 (2018).

    Google Scholar 

  • Gebremichael, M. et al. Error uncertainty analysis of GPCP monthly rainfall products: a data-based simulation study. J. Appl. Meteorol. 42, 1837–1848 (2003).

    Google Scholar 

  • Rodell, M. et al. Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett. 31, L20504 (2004).

    Google Scholar 

  • Major River Basins of the World (Global Runoff Data Centre, 2020).

  • Pascolini-Campbell, M. A., Reager, J. T. & Fisher, J. B. GRACE-based mass conservation as a validation target for basin-scale evapotranspiration in the contiguous United States. Water Resour. Res. 56, e2019WR026594 (2020).

    Google Scholar 

  • Fekete, B. M., Vörösmarty, C. J. & Grabs, W. High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem. Cycles 16, 15-1–15-10 (2002).

    Google Scholar 

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Google Scholar 

  • Myneni, R., Knyazikhin, Y. & Park, T (ed. NASA EOSDIS Land Processes DAAC) (2021).

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Google Scholar 

  • Sulla-Menashe, D. & Friedl, M. A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product (US Geological Survey, 2018).

  • Zhao, M., Aa, G., Liu, Y. & Konings, A. Evapotranspiration frequently increases during droughts. Zenodo https://doi.org/10.5281/zenodo.6842054 (2022).


  • Source: Ecology - nature.com

    Coordinating climate and air-quality policies to improve public health

    Pesticide innovation takes top prize at Collegiate Inventors Competition