in

Phylogeny explains capture mortality of sharks and rays in pelagic longline fisheries: a global meta-analytic synthesis

  • Estes, J. et al. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Environ. Resour. 41, 83–116 (2016).

    Google Scholar 

  • Ferretti, F., Worm, B., Britten, G., Heithaus, M. & Lotze, H. Patterns and ecosystem consequences of shark declines in the ocean. Ecol. Lett. 13, 1055–1071 (2010).

    PubMed 

    Google Scholar 

  • Heithaus, M. R. et al. Seagrasses in the age of sea turtle conservation and shark overfishing. Front. Mar. Sci. 1, 1–6 (2014).

    Google Scholar 

  • McCauley, D. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 1255641 (2015).

    PubMed 

    Google Scholar 

  • Pereira, H. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Oliver, S., Braccini, M., Newman, S. & Harvey, E. S. Global patterns in the bycatch of sharks and rays. Mar. Policy 54, 86–97 (2015).

    Google Scholar 

  • Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–574 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gilman, E. et al. Shark interactions in pelagic longline fisheries. Mar. Policy 32, 1–18 (2008).

    Google Scholar 

  • Worm, B. et al. Global catches, exploitation rates, and rebuilding options for sharks. Mar. Policy 40, 194–204 (2013).

    Google Scholar 

  • Bowlby, H. & Gibson, A. Implications of life history uncertainty when evaluating status in the Northwest Atlantic population of white shark (Carcharodon carcharias). Ecol. Evol. 10, 4990–5000 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dulvy, N. et al. Overfishing drives over one third of all sharks and rays toward a global extinction crisis. Curr. Biol. 31, 4773-4787.e8 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Heino, M., Pauli, B. & Dieckmann, U. Fisheries-induced evolution. Annu. Rev. Ecol. Evol. Syst. 46, 461–480 (2015).

    Google Scholar 

  • Mitchell, J., McLean, D., Collins, S. & Langlois, T. Shark depredation in commercial and recreational fisheries. Rev. Fish Biol. Fish 28, 715–748 (2018).

    Google Scholar 

  • Jaiteh, V. F., Loneragan, N. & Warren, C. The end of shark finning? Impacts of declining catches and fin demand on coastal community livelihoods. Mar. Policy 82, 224–233 (2017).

    Google Scholar 

  • Seidu, I. et al. Fishing for survival: Importance of shark fisheries for the livelihoods of coastal communities in Western Ghana. Fish. Res. 246, 106157 (2022).

    Google Scholar 

  • Gilman, E., Weijerman, M. & Suuronen, P. Ecological data from observer programs underpin ecosystem-based fisheries management. ICES J. Mar. Sci. 74, 1481–1495 (2017).

    Google Scholar 

  • Melnychuk, M. et al. Identifying management actions that promote sustainable fisheries. Nat. Sustain. https://doi.org/10.1038/s41893-020-00668-1 (2021).

    Article 

    Google Scholar 

  • Musyl, M. & Gilman, E. Meta-analysis of post-release fishing mortality in apex predatory pelagic sharks and white marlin. Fish Fish. 20, 466–500 (2019).

    Google Scholar 

  • Clarke, S. A status snapshot of key shark species in the western and central pacific and potential management options. in WCPFC-SC7-2011/EB-WP-04. Western and Central Pacific Fisheries Commission, Kolonia, Federated States of Micronesia (2011).

  • Dapp, D., Walker, T., Huveneers, C. & Reina, R. Respiratory mode and gear type are important determinants of elasmobranch immediate and post-release mortality. Fish Fish. 17, 507–524 (2016).

    Google Scholar 

  • ICES. Report of the working group on elasmobranch fishes. in ICES CM 2018/ACOM:16. International Council for the Exploration of the Sea, Copenhagen (2018).

  • Dicks, L. et al. A transparent process for “evidence-informed” policy making. Conserv. Lett. 7, 119–125 (2014).

    Google Scholar 

  • Nichols, J., Kendall, W. & Boomer, G. Accumulating evidence in ecology: Once is not enough. Ecol. Evol. 9, 13991–14004 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakagawa, S. et al. Meta-analysis of variation: Ecological and evolutionary applications and beyond. Methods Ecol. Evol. 6, 143–152 (2015).

    Google Scholar 

  • Pfaller, J., Chaloupka, M., Bolten, A. & Bjorndal, K. Phylogeny, biogeography and methodology: A meta-analytic perspective on heterogeneity in adult marine turtle survival rates. Sci. Rep. 8, 5852. https://doi.org/10.1038/s41598-018-24262-w (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Godin, A., Carlson, J. & Burgener, V. The effect of circle hooks on shark catchability and at-vessel mortality rates in longlines fisheries. Bull. Mar. Sci. 88, 469–483 (2012).

    Google Scholar 

  • Reinhardt, J. et al. Catch rate and at-vessel mortality of circle hooks versus J-hooks in pelagic longline fisheries: A global meta-analysis. Fish Fish. 19, 413–430 (2018).

    Google Scholar 

  • Rosa, D., Santos, C. & Coelho, R. Assessing the effects of hook, bait and leader type as potential mitigation measures to reduce bycatch and mortality rates of shortfin mako: A meta-analysis with comparisons for target, bycatch and vulnerable fauna interactions. in ICCAT Collective Volume of Scientifics Papers 76, 247–278 (2020).

  • Santos, C., Rosa, D. & Coelho, R. Hook, bait and leader type effects on surface pelagic longline retention and mortality rates: A meta-analysis with comparisons for target, bycatch and vulnerable fauna interactions. in IOTC-2019-WPEB15-39. Indian Ocean Tuna Commission, Mahe, Seychelles (2019).

  • Santos, C., Rosa, D. & Coelho, R. Progress on a meta-analysis for comparing hook, bait and leader effects on target, bycatch and vulnerable fauna interactions. in Collective Volume of Scientifics Papers ICCAT 77, 182–217 (2020).

  • Condamine, F., Romieu, J. & Guinot, G. Climate cooling and clade competition likely drove the decline of lamniform sharks. PNAS 116, 20584–20590 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. & Bürkner, P. Rank-normalization, folding, and localization: An improved Rhat for assessing convergence of MCMC (with Discussion). Bayesian Anal. 16, 667–718 (2021).

    MathSciNet 

    Google Scholar 

  • Cinar, O., Nakagawa, S. & Viechtbauer, W. Phylogenetic multilevel meta-analysis: A simulation study on the importance of modelling the phylogeny. Methods Ecol. Evol. 13, 383–395 (2022).

    Google Scholar 

  • Lajeunesse, M. Meta-analysis and the comparative phylogenetic method. Am. Nat. 174, 369–381 (2009).

    PubMed 

    Google Scholar 

  • Chamberlain, S. et al. Does phylogeny matter? Assessing the impact of phylogenetic information in ecological meta-analysis. Ecol. Lett. 15, 627–636 (2012).

    PubMed 

    Google Scholar 

  • Burns, J. & Strauss, S. More closely related species are more ecologically similar in an experimental test. Proc. Natl. Acad. Sci. USA 108, 5302–5307 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cachera, M. & Le Loc’h, F. Assessing the relationships between phylogenetic and functional singularities in sharks (Chondrichthyes). Ecol. Evol. 7, 6292–6303 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Münkemüller, T., Boucher, F. C., Thuiller, W. & Lavergne, S. Phylogenetic niche conservatism—Common pitfalls and ways forward. Funct. Ecol. 29, 627–639 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bazzi, M., Campione, N., Kear, B., Pimiento, C. & Ahlberg, P. Feeding ecology has shaped the evolution of modern sharks. Curr. Biol. 31, 5138–5148 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Sepulveda, C., Wegner, N., Bernal, D. & Graham, J. The red muscle morphology of the thresher sharks (family Alopiidae). J. Exp. Biol. 208, 4255–4261 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Wosnick, N. et al. Multispecies thermal dynamics of air-exposed ectothermic sharks and its implications for fisheries conservation. J. Exp. Mar. Biol. Ecol. 513, 1–9 (2019).

    Google Scholar 

  • French, R. et al. High survivorship after catch-and-release fishing suggests physiological resilience in the endothermic shortfin mako shark (Isurus oxyrinchus). Conserv. Physiol. https://doi.org/10.1093/conphys/cov044 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davis, M. Key principles for understanding fish bycatch discard mortality. Can. J. Fish. Aquat. Sci. 59, 1834–1843 (2002).

    Google Scholar 

  • Massey, Y., Sabarros, P., Rabearisoa, N. & Bach, P. Drivers of at-haulback mortality of sharks caught during pelagic longline fishing experiments. in IOTC-2019-WPEB15-14_Rev1. Indian Ocean Tuna Commission, Mahe, Seychelles (2019).

  • Musyl, M., Moyes, C., Brill, R. & Fragoso, N. Factors influencing mortality estimates in post-release survival studies: Comment on Campana et al. (2009). Mar. Ecol. Prog. Ser. 396, 157–159 (2009).

  • Pimiento, C., Cantalapiedra, J., Shimada, K., Field, D. & Smaers, J. Evolutionary pathways towards gigantism in sharks and rays. Evolution 73, 588–599 (2019).

    PubMed 

    Google Scholar 

  • Musyl, M. & Gilman, E. Post-release fishing mortality of blue (Prionace glauca) and silky shark (Carcharhinus falciformes) from a Palauan-based commercial longline fishery. Rev. Fish Biol. Fish. 28, 567–658 (2018).

    Google Scholar 

  • Childs, D., Sheldon, B. & Rees, M. The evolution of labile traits in sex- and age-structured populations. J. Anim. Ecol. 85, 329–342 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Comte, L., Murienne, J. & Grenouillet, G. Species traits and phylogenetic conservatism of climate-induced range shifts in stream fishes. Nat. Commun. 5, 5053 (2014).

    ADS 
    PubMed Central 

    Google Scholar 

  • IUCN. The IUCN Red List of Threatened Species. Version 2021-3. www.iucnredlist.org. ISSN 2307-8235 (International Union for the Conservation of Nature, Gland, Switzerland, 2022).

  • García, V., Lucifora, L. & Ransom, M. The importance of habitat and life history to extinction risk in sharks, skates, rays and chimaeras. Proc. R. Soc. B 275, 83–89 (2008).

    PubMed 

    Google Scholar 

  • Cortes, E. Perspectives on the intrinsic rate of population growth. Methods Ecol. Evol. 7, 1136–1145 (2016).

    Google Scholar 

  • Ellis, J. et al. A review of capture and post-release mortality of elasmobranchs. J. Fish Biol. 90, 653–722 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Gallagher, A., Orbesen, E., Hammerschlag, N. & Serafy, J. Vulnerability of oceanic sharks as pelagic longline bycatch. Glob. Ecol. Conserv. 1, 50–59 (2014).

    Google Scholar 

  • Afonso, A., Santiago, R., Hazin, H. & Hazin, F. Shark bycatch and mortality and hook bite-offs in pelagic longlines: Interactions between hook types and leader materials. Fish. Res. 131–133, 9–14 (2012).

    Google Scholar 

  • Gilman, E., Chaloupka, M. & Musyl, M. Effects of pelagic longline hook size on species- and size-selectivity and survival. Rev. Fish Biol. Fish. 28, 417–433 (2018).

    Google Scholar 

  • Epperly, S., Watson, J., Foster, D. & Shah, A. Anatomical hooking location and condition of animals captured with pelagic longlines: The grand banks experiments 2002–2003. Bull. Mar. Sci. 88, 513–527 (2012).

    Google Scholar 

  • Amorim, S., Santos, M., Coelho, R. & Fernandez-Carvalho, J. Effects of 17/0 circle hooks and bait on fish catches in a southern Atlantic swordfish longline fishery. Aquat. Conserv. 25, 518–533 (2014).

    Google Scholar 

  • Coelho, R., Fernandez-Carvalho, J., Lino, P. & Santos, M. An overview of the hooking mortality of elasmobranchs caught in a swordfish pelagic longline fishery in the Atlantic Ocean. Aquat. Living Resour. 25, 311–319 (2012).

    Google Scholar 

  • Gilman, E. et al. A decision support tool for integrated fisheries bycatch management. Rev. Fish Biol. Fish. https://doi.org/10.1007/s11160-021-09693-5 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pascoe, S. et al. Use of incentive-based management systems to limit bycatch and discarding. Int. Rev. Environ. Resour. Econ. 4, 123–161 (2010).

    Google Scholar 

  • Somers, K., Pfeiffer, L., Miller, S. & Morrison, W. Using incentives to reduce bycatch and discarding: Results under the west coast catch share program. Coast. Manag. 46, 1–17 (2019).

    Google Scholar 

  • Abbott, J. & Wilen, J. Regulation of fisheries bycatch with common-pool output quotas. J. Environ. Econ. Manag. 57, 195–204 (2009).

    MATH 

    Google Scholar 

  • Gilman, E. et al. Increasing the functionalities and accuracy of fisheries electronic monitoring systems. Aquat. Conserv. 29, 901–926 (2019).

    Google Scholar 

  • Watling, J. Fishing observers ‘intimidated and bribed by EU crews’. Quota checks allegedly being compromised aboard Northwest Atlantic fishery boats, as observers report surveillance and theft. The Guardian (2012, accessed 21 July 2022). https://www.theguardian.com/environment/2012/may/18/fishing-inspectors-intimidated-bribed-crews.

  • Clarke, S., Harley, S., Hoyle, S. & Rice, J. Population trends in Pacific oceanic sharks and the utility of regulations on shark finning. Conserv. Biol. 27, 197–209 (2013).

    PubMed 

    Google Scholar 

  • Tolotti, M. T. et al. Banning is not enough: The complexities of oceanic shark management by tuna regional fisheries management organizations. Glob. Ecol. Conserv. 4, 1–7 (2015).

    Google Scholar 

  • Gilman, E., Chaloupka, M., Merrifield, M., Malsol, N. & Cook, C. Standardized catch and survival rates, and effect of a ban on shark retention, Palau pelagic longline fishery. Aquat. Conserv. 26, 1031–1062 (2016).

    Google Scholar 

  • CITES. Appendices I, II and III. Valid from 22 June 2021. Convention on International Trade in Endangered Species of Wild Fauna and Flora, United Nations Environment Program, Geneva (2021).

  • Ward-Paige, C. A global overview of shark sanctuary regulations and their impact on shark fisheries. Mar. Policy 82, 87–97 (2017).

    Google Scholar 

  • E.U. Regulation (E.U.) No 1380/2013 of the European Parliament and of the Council of 11 December 2013 on the Common Fisheries Policy, amending Council Regulations (EC) No 1954/2003 and (EC) No 1224/2009 and repealing Council Regulations (EC) No 2371/2002 and (EC) No 639/2004 and Council Decision 2004/585/EC. Official Journal of the European Union L354, 22–61 (2013).

  • FAO. International Guidelines on Bycatch Management and Reduction of Discards (Food and Agriculture Organization of the United Nations, Rome, 2011).

  • CCSBT. Resolution to Align CCSBT’s Ecologically Related Species Measures with those of other Tuna RFMOs (Commission for the Conservation of Southern Bluefin Tuna, Deakin West, Australia, 2021).

  • IATTC. Active Resolutions and Recommendations (Inter-American Tropical Tuna Commission, La Jolla, 2022).

  • ICCAT. Compendium. Management Recommendations and Resolutions Adopted by ICCAT for the Conservation of Atlantic Tunas and Tuna-like Species (International Commission for the Conservation of Atlantic Tunas, Madrid, 2021).

  • IOTC. Compendium of Active Conservation and Management Measures for the Indian Ocean Tuna Commission (Indian Ocean Tuna Commission, Mahe, 2021).

  • WCPFC. Conservation and Management Measures and Resolutions of the Western and Central Pacific Fisheries Commission. Compiled 31 August 2021 (Western and Central Pacific Fisheries Commission, Kolonia, Federated States of Micronesia, 2021).

  • Faith, D. Threatened species and the potential loss of phylogenetic diversity: Conservation scenarios based on estimated extinction probabilities and phylogenetic risk analysis. Conserv. Biol. 22, 1461–1470 (2008).

    PubMed 

    Google Scholar 

  • Dolce, J. & Wilga, C. Evolutionary and ecological relationships of gill slit morphology in extant sharks. Bull. Mus. Comp. 161, 79–109 (2013).

    Google Scholar 

  • MacLeod, N. & Forey, P. Morphology, Shape and Phylogeny (CRC Press, 2002).

    Google Scholar 

  • Haddaway, N., Macura, B., Whaley, P. & Pullin, A. ROSES RepOrting standards for Systematic Evidence Syntheses: pro forma, flow-diagram and descriptive summary of the plan and conduct of environmental systematic reviews and systematic maps. Environ. Evid. https://doi.org/10.1186/s13750-018-0121-7 (2018).

    Article 

    Google Scholar 

  • Pullin, A., Frampton, G., Livoreil, B. & Petrokofsky, G., Eds. Section 5. Conducting a Search. Key CEE Standards for Conduct and Reporting. In Pullin, A., Frampton, G., Livoreil, B., Petrokofsky, G., Eds. Guidelines and Standards for Evidence Synthesis in Environmental Management. Version 5.0. Collaboration for Environmental Evidence (2020).

  • Pullin, A., Frampton, G., Livoreil, B. & Petrokofsky, G. (eds) Section 3. Planning a CEE Evidence Synthesis. In Pullin, A., Frampton, G., Livoreil, B., Petrokofsky, G. (eds) Guidelines and Standards for Evidence Synthesis in Environmental Management. Version 5.0. Collaboration for Environmental Evidence (2021).

  • Page, M. et al. The PRISMA statement: An updated guideline for reporting systematic reviews. BMJ https://doi.org/10.1136/bmj.n.71 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Tuyl, F., Gerlach, R. & Mengersen, K. Comparison of Bayes-Laplace, Jeffreys, and other priors: The case of zero events. Am. Stat. 62, 40–44 (2008).

    MathSciNet 

    Google Scholar 

  • Dorai-Raj, S. binom: Binomial confidence intervals for several parameterizations. R package version 1.1-1. https://CRAN.R-project.org/package=binom (2014).

  • van Lissa, C. Small sample meta-analyses: Exploring heterogeneity using MetaForest. Chapter 13. In Small Sample Size Solutions: A Guide for Applied Researchers and Practitioners (eds Van De Schoot, R. & Miočević, M.) 186–202 (Routledge, Oxford, 2020).

    Google Scholar 

  • Wright, M. & Ziegler, A. ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77, 1–17 (2017).

    Google Scholar 

  • Janitza, S., Celik, E. & Boulesteix, A. A computationally fast variable importance test for random forests for high-dimensional data. Adv. Data Anal. Classif. 12, 885–915 (2018).

    MathSciNet 
    MATH 

    Google Scholar 

  • Mayer, M. missRanger: Fast imputation of missing values. R package version 2.1.3. https://CRAN.R-project.org/package=missRanger (2021).

  • Konstantopoulos, S. Fixed effects and variance components estimation in three-level meta-analysis. Research Synthesis. Methods 2, 61–76 (2011).

    Google Scholar 

  • Amaral, C., Pereira, F., Silva, D., Amorim, A. & de Carvalho, E. The mitogenomic phylogeny of the Elasmobranchii (Chondrichthyes). Mitochondrial DNA A 29, 867–878 (2017).

    Google Scholar 

  • Hara, Y. et al. Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nat. Ecol. Evol. 2, 1761–1771 (2018).

    PubMed 

    Google Scholar 

  • Naylor, G. et al. A DNA sequence-based approach to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology. Bull. Am. Mus. Nat. 367, 1–262 (2012).

    Google Scholar 

  • Stein, R. et al. Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. Nat. Ecol. Evol. 2, 288–298 (2018).

    PubMed 

    Google Scholar 

  • Maddison, D., Swofford, D., Maddison, W. & Cannatella, D. Nexus: An extensible file format for systematic information. Syst. Biol. 46, 590–621 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Upham, N., Esselstyn, J. & Jetz, W. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinform. 69, e96. https://doi.org/10.1002/cpbi.96 (2020).

    Article 

    Google Scholar 

  • Hadfield, J. & Nakagawa, S. General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol 23, 494–508 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Lin, L. & Chu, H. Meta-analysis of proportions using generalized linear mixed models. Epidemiology 31, 713–717 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Carpenter, B. et al. Stan: A probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).

    Google Scholar 

  • Bürkner, P. brms: An R Package for Bayesian multilevel models using Stan. J. Stat. Softw. 81, 1–28 (2017).

    Google Scholar 

  • Günhan, B., Röver, C. & Friede, T. Random-effects meta-analysis of few studies involving rare events. Res. Synth. Methods 11, 74–90 (2020).

    PubMed 

    Google Scholar 

  • Pappalardo, P. et al. Comparing traditional and Bayesian approaches to ecological meta-analysis. Methods Ecol. Evol. 11, 1286–1295 (2020).

    Google Scholar 

  • Ott, M., Plummer, M. & Roos, M. How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. Stat. Med. 40, 4505–4521 (2021).

    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wood, S. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall, 2017).

    MATH 

    Google Scholar 

  • Kruschke, J. & Liddell, T. The Bayesian new statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychon. Bull. Rev. 25, 178–206 (2018).

    PubMed 

    Google Scholar 

  • Kay, M. tidybayes: Tidy data and geoms for Bayesian models. R package version 2.1.1. https://doi.org/10.5281/zenodo.1308151 (2020).

  • Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).

    ADS 

    Google Scholar 

  • Searle, S., Speed, F. & Milliken, G. Population marginal means in the linear model: An alternative to least squares means. Am. Stat. 34, 216–221 (1980).

    MathSciNet 
    MATH 

    Google Scholar 

  • Lenth, R. emmeans: Estimated marginal means, aka least-squares means. R package version 1.5.2-1. https://CRAN.R-project.org/package=emmeans (2020).

  • Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).

    Google Scholar 

  • Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).

    MathSciNet 
    MATH 

    Google Scholar 

  • Yao, Y., Vehtari, A., Simpson, D. & Gelman, A. Using stacking to average Bayesian predictive distributions (with Discussion). Bayesian Anal. 13, 917–1003 (2018).

    MathSciNet 
    MATH 

    Google Scholar 

  • Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Soc. Ser. A 182, 1–14 (2019).

    MathSciNet 

    Google Scholar 

  • Lazic, S., Mellor, J., Ashby, M. & Munafo, M. A Bayesian predictive approach for dealing with pseudoreplication. Sci. Rep. 10, 2020. https://doi.org/10.1038/s41598-020-59384-7 (2020).

    Article 
    CAS 

    Google Scholar 

  • Page, M., Sterne, J., Higgins, J. & Egger, M. Investigating and dealing with publication bias and other reporting biases in meta-analyses of health research: A review. Res. Synth. Methods 12, 248–259 (2021).

    PubMed 

    Google Scholar 

  • Peters, J., Sutton, A., Jones, D., Abrams, K. & Rushton, L. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J. Clin. Epidemiol. 61, 991–996 (2008).

    PubMed 

    Google Scholar 

  • Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Google Scholar 

  • Gasparrini, A., Armstrong, B. & Kenward, M. Multivariate meta-analysis for non-linear and other multi-parameter associations. Stat. Med. 31, 3821–3839 (2012).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Pesticide innovation takes top prize at Collegiate Inventors Competition

    Coupling phenotypic changes to extinction and survival in an endemic prey community threatened by an invasive snake