in

Honey compositional convergence and the parallel domestication of social bees

  • Allsop, K. A. & Miller, J. B. Honey revisited: A reappraisal of honey in pre-industrial diets. Br. J. Nutr. 75, 513–520 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dams, M. & Dams, L. Spanish rock art depicting honey gathering during the Mesolithic. Nature 268, 228–230 (1977).

    Article 
    ADS 

    Google Scholar 

  • Bradbear, N. Bees and their role in forest livelihoods: A guide to the services provided by bees and the sustainable harvesting, processing and marketing of their products. Non-Wood Forests Products Series, Vol. 19 (FAO, Rome, 2009).

    Google Scholar 

  • Crane, E. The World History of Beekeeping and Honey Hunting (Routledge, 1999).

    Book 

    Google Scholar 

  • Kritsky, G. Beekeeping from Antiquity through the middle ages. Annu. Rev. Entomol. 62, 249–264 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Grüter, C. Stingless Bees: Their Behaviour, Ecology and Evolution (Springer International Publishing, 2020).

    Book 

    Google Scholar 

  • Weaver, N. & Weaver, E. C. Beekeeping with the stingless bee Melipona beecheii, by the Yucatecan Maya. Bee World 62, 7–19 (1981).

    Article 

    Google Scholar 

  • Quezada-Euán, J. J. G. Stingless Bees of Mexico: The Biology, Management and Conservation of an Ancient Heritage (Springer, 2018).

    Book 

    Google Scholar 

  • Medellín Morales, S. Meliponicultura Maya: Perspectivas para su sostenibilidad. Reporte de sostenibilidad Maya no. 2; 67 pp. (1991).

  • González-Acereto, J. A. La meliponicultura yucateca en crisis: Una actividad indígena a punto de desaparecer, 1er Seminario Nacional sobre Abejas sin Aguijón. Boca Río Ver México 9–12 (1999).

  • Russell, P. The History of Mexico: From Pre-conquest to Present (Routledge, 2010).

    Google Scholar 

  • Quezada-Euan, J. J., May-Itzá, W. & González-Acereto, J. Meliponiculture in Mexico: Problems and perspective for development. Bee World 82, 160–167 (2001).

    Article 

    Google Scholar 

  • Freitas, B. M. et al. Diversity, threats and conservation of native bees in the Neotropics. Apidologie 40, 332–346 (2009).

    Article 

    Google Scholar 

  • Toledo-Hernández, E. et al. The stingless bees (Hymenoptera: Apidae: Meliponini): A review of the current threats to their survival. Apidologie 53, 8 (2022).

    Article 

    Google Scholar 

  • Guzman-Novoa, E. et al. The process and outcome of the Africanization of honey bees in Mexico: Lessons and future directions. Front. Ecol. Evol. 8, 404 (2020).

    Article 

    Google Scholar 

  • Fletcher, M. et al. Stingless bee honey, a novel source of trehalulose: A biologically active disaccharide with health benefits. Sci. Rep. 10, 12128 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rao, P. V., Krishnan, K. T., Salleh, N. & Gan, S. H. Biological and therapeutic effects of honey produced by honey bees and stingless bees: A comparative review. Rev. Bras. Farmacogn. 26, 657–664 (2016).

    Article 
    CAS 

    Google Scholar 

  • Rattanawannee, A. & Duangphakdee, O. Southeast Asian meliponiculture for sustainable livelihood. In Modern Beekeeping – Bases for Sustainable Production (ed. Ranz, R. E. R.) (IntechOpen, 2019).

    Google Scholar 

  • Heard, T. The role of stingless bees in crop pollination. Annu. Rev. Entomol. 44, 183–206 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Slaa, E. J., Chaves, L. A. S., Malagodi-Braga, K. S. & Hofstede, F. E. Stingless bees in applied pollination: Practice and perspectives. Apidologie 37, 293–315 (2006).

    Article 

    Google Scholar 

  • Kendall, L. K., Stavert, J. R., Gagic, V., Hall, M. & Rader, R. Initial floral visitor identity and foraging time strongly influence blueberry reproductive success. Basic Appl. Ecol. https://doi.org/10.1016/j.baae.2022.02.009 (2022).

    Article 

    Google Scholar 

  • Kiatoko, N. et al. Effective pollination of greenhouse Galia musk melon (Cucumis melo L. var. reticulatus ser.) by afrotropical stingless bee species. J. Apic. Res. https://doi.org/10.1080/00218839.2021.2021641 (2022).

    Article 

    Google Scholar 

  • Nkoba, K. et al. African endemic stingless bees as an efficient alternative pollinator to honey bees in greenhouse cucumber (Cucumis sativus L.). J. Apic. Res. https://doi.org/10.1080/00218839.2021.2013421 (2022).

    Article 

    Google Scholar 

  • FAO, A. Good beekeeping practices for sustainable apiculture. (FAO, IZSLT, Apimondia and CAAS, 2020). doi:https://doi.org/10.4060/cb5353en.

  • Patel, V., Pauli, N., Biggs, E., Barbour, L. & Boruff, B. Why bees are critical for achieving sustainable development. Ambio 50, 49–59 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Fuller, D. Q. et al. Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proc. Natl. Acad. Sci. 111, 6147–6152 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Purugganan, M. D. An evolutionary genomic tale of two rice species. Nat. Genet. 46, 931–932 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kleisner, K. & Stella, M. Monsters we met, monsters we made: On the parallel emergence of phenotypic similarity under domestication. Σημειωτκή – Sign Syst. Stud. 37, 454–476 (2009).

    Article 

    Google Scholar 

  • Wilkins, A. S., Wrangham, R. W. & Fitch, W. T. The, “Domestication Syndrome” in mammals: A unified explanation based on neural crest cell behavior and genetics. Genetics 197, 795–808 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lecocq, T. Insects: The disregarded domestication histories. In Animal Domestication (ed. Teletchea, F.) (IntechOpen, 2018).

    Google Scholar 

  • Pollan, M. The botany of desire: A plant’s-eye view of the world. Econ. Bot. 57(1), 146–147 (2002).

    Google Scholar 

  • Chuttong, B., Chanbang, Y., Sringarm, K. & Burgett, M. Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). Food Chem. 192, 149–155 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Spivak, M. & Danka, R. G. Perspectives on hygienic behavior in Apis mellifera and other social insects. Apidologie 52, 1–16 (2021).

    Article 

    Google Scholar 

  • Breed, M. D., Guzmán-Novoa, E. & Hunt, G. J. 3. Defensive behavior of honey bees: Organization, genetics, and comparisons with other bees. Annu. Rev. Entomol. 49, 271–298 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hunt, G. J. et al. Behavioral genomics of honeybee foraging and nest defense. Naturwissenschaften 94, 247–267 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Faegri, K. & van der Pijl,. Principles of Pollination Ecology (Pergamon Press, 1979).

    Google Scholar 

  • Nicolson, S. W. & Thornburg, R. W. Nectar chemistry. In Nectaries and Nectar (eds Nicolson, S. W. et al.) (Springer Netherlands, 2007).

    Chapter 

    Google Scholar 

  • Abrahamczyk, S. et al. Pollinator adaptation and the evolution of floral nectar sugar composition. J. Evol. Biol. 30, 112–127 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Parachnowitsch, A. L., Manson, J. S. & Sletvold, N. Evolutionary ecology of nectar. Ann. Bot. 123, 247–261 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rasmussen, C. & Cameron, S. A. Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal. Biol. J. Linn. Soc. 99, 206–232 (2010).

    Article 

    Google Scholar 

  • Bantle, J. P. Dietary fructose and metabolic syndrome and diabetes. J. Nutr. 139, 1263S-1268S (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Erejuwa, O. O., Sulaiman, S. A. & Wahab, M. S. A. fructose might contribute to the hypoglycemic effect of honey. Molecules 17, 1900–1915 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kwakman, P. H. S. & Zaat, S. A. J. Antibacterial components of honey. IUBMB Life 64, 48–55 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Viuda-Martos, M., Ruiz-Navajas, Y., Fernández-López, J. & Pérez-Álvarez, J. A. Functional properties of honey, propolis, and royal jelly. J. Food Sci. 73, R117–R124 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Machado De-Melo, A. A., de Almeida-Muradian, L. B., Sancho, M. T. & Pascual-Maté, A. Composition and properties of Apis mellifera honey: A review. J. Apic. Res. 57, 5–37 (2018).

    Article 

    Google Scholar 

  • Nordin, A., Sainik, N. Q. A. V., Chowdhury, S. R., Saim, A. B. & Idrus, R. B. H. Physicochemical properties of stingless bee honey from around the globe: A comprehensive review. J. Food Compos. Anal. 73, 91–102 (2018).

    Article 
    CAS 

    Google Scholar 

  • Viteri, R., Zacconi, F., Montenegro, G. & Giordano, A. Bioactive compounds in Apis mellifera monofloral honeys. J. Food Sci. 86, 1552–1582 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bueno, F. G. B. et al. Stingless bee floral visitation in the global tropics and subtropics. BioRxiv. https://doi.org/10.1101/2021.04.26.440550 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rasmussen, C. & Cameron, S. A. A molecular phylogeny of the Old World stingless bees (Hymenoptera: Apidae: Meliponini) and the non-monophyly of the large genus Trigona. Syst. Entomol. 32, 26–39 (2007).

    Article 

    Google Scholar 

  • Mokaya, H. O., Nkoba, K., Ndunda, R. M. & Vereecken, N. J. Characterization of honeys produced by sympatric species of Afrotropical stingless bees (Hymenoptera, Meliponini). Food Chem. 366, 130597 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Souza, E. C. A., Menezes, C. & Flach, A. Stingless bee honey (Hymenoptera, Apidae, Meliponini): A review of quality control, chemical profile, and biological potential. Apidologie 52, 113–132 (2021).

    Article 

    Google Scholar 

  • Ohmenhaeuser, M., Monakhova, Y. B., Kuballa, T. & Lachenmeier, D. W. Qualitative and quantitative control of honeys using NMR spectroscopy and chemometrics. ISRN Anal. Chem. 2013, 1–9 (2013).

    Article 

    Google Scholar 

  • Mazzoni, V., Bradesi, P., Tomi, F. & Casanova, J. Direct qualitative and quantitative analysis of carbohydrate mixtures using 13C NMR spectroscopy: Application to honey. Magn. Reson. Chem. 35, S81–S90 (1997).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/(SICI)1097-458X(199712)35:133.0.CO;2-E” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291097-458X%28199712%2935%3A13%3CS81%3A%3AAID-OMR202%3E3.0.CO%3B2-E” aria-label=”Article reference 53″ data-doi=”10.1002/(SICI)1097-458X(199712)35:133.0.CO;2-E”>Article 
    CAS 

    Google Scholar 

  • Consonni, R. & Cagliani, L. R. Geographical characterization of polyfloral and acacia honeys by nuclear magnetic resonance and chemometrics. J. Agric. Food Chem. 56, 6873–6880 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schievano, E., Peggion, E. & Mammi, S. H1 nuclear magnetic resonance spectra of chloroform extracts of honey for chemometric determination of its botanical origin. J. Agric. Food Chem. 58, 57–65 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • RStudio Team. RStudio: Integrated Development Environment for R. Rstudio, PBC, Boston, MA. URL http://www.rstudio.com (2020).

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2021).

  • Oksanen J., et al. Vegan: Community ecology package. McGlinn lab URL https://CRAN.R-project.org/package=vegan (2020).

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).

    Book 
    MATH 

    Google Scholar 

  • Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinforma. 69, e96. https://doi.org/10.1002/cpbi.96 (2020).

    Article 

    Google Scholar 

  • Cáceres, M. D. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).

    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Multiscale imaging on Saxifraga paniculata provides new insights into yttrium uptake by plants

    In nanotube science, is boron nitride the new carbon?