in

Intermediate snowpack melt-out dates guarantee the highest seasonal grasslands greening in the Pyrenees

  • Battaglini, L., Bovolenta, S., Gusmeroli, F., Salvador, S. & Sturaro, E. Environmental sustainability of alpine livestock farms. Ital. J. Anim. Sci. 13, 3155 (2014).

    Google Scholar 

  • Lavorel, S. et al. Historical trajectories in land use pattern and grassland ecosystem services in two European alpine landscapes. Reg. Environ. Change 17, 2251–2264 (2017).

    PubMed Central 

    Google Scholar 

  • Pan, Y., Wu, J. & Xu, Z. Analysis of the tradeoffs between provisioning and regulating services from the perspective of varied share of net primary production in an alpine grassland ecosystem. Ecol. Complex. 17, 79–86 (2014).

    Google Scholar 

  • Rossi, M. et al. A comparison of the signal from diverse optical sensors for monitoring alpine grassland dynamics. Remote Sens. 11, 296 (2019).

    ADS 

    Google Scholar 

  • Körner, C. Plant ecology at high elevations. In Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems (ed. Körner, C.) 1–7 (Springer, 2003). https://doi.org/10.1007/978-3-642-18970-8_1.

  • Jonas, T., Rixen, C., Sturm, M. & Stoeckli, V. How alpine plant growth is linked to snow cover and climate variability. J. Geophys. Res. Biogeosci. 113 (2008).

  • Körner, C. Impact of atmospheric changes on high mountain vegetation. In Mountain Environments in Changing Climates 155–166 (Routledge, 1994).

  • Choler, P. Growth response of temperate mountain grasslands to inter-annual variations in snow cover duration. Biogeosciences 12, 3885–3897 (2015).

    ADS 

    Google Scholar 

  • Schirmer, M., Wirz, V., Clifton, A. & Lehning, M. Persistence in intra-annual snow depth distribution: 1. Measurements and topographic control. Water Resour. Res. 47, 09516 (2011).

    ADS 

    Google Scholar 

  • Revuelto, J., Jonas, T. & López-Moreno, J.-I. Backward snow depth reconstruction at high spatial resolution based on time-lapse photography. Hydrol. Process. 30, 2976–2990 (2016).

    ADS 

    Google Scholar 

  • López-Moreno, J. I. et al. Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent. Adv. Water Resour. 55, 40–52 (2013).

    ADS 

    Google Scholar 

  • Clark, M. P. et al. Representing spatial variability of snow water equivalent in hydrologic and land-surface models: A review. Water Resour. Res. 47, (2011).

  • Wayand, N. E., Hamlet, A. F., Hughes, M., Feld, S. I. & Lundquist, J. D. Intercomparison of meteorological forcing data from empirical and mesoscale model sources in the north fork american river basin in northern sierra Nevada, California. J. Hydrometeorol. 14, 677–699 (2013).

    ADS 

    Google Scholar 

  • Revuelto, J., López-Moreno, J. I., Azorin-Molina, C. & Vicente-Serrano, S. M. Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: Intra- and inter-annual persistence. Cryosphere 8, 1989–2006 (2014).

    ADS 

    Google Scholar 

  • Winkler, D. E., Butz, R. J., Germino, M. J., Reinhardt, K. & Kueppers, L. M. Snowmelt timing regulates community composition, phenology, and physiological performance of alpine plants. Front. Plant Sci. (2018).

  • Scherrer, D. & Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406–416 (2011).

    Google Scholar 

  • Billings, W. D. Arctic and alpine vegetations: Similarities, differences, and susceptibility to disturbance. Bioscience 23, 697–704 (1973).

    Google Scholar 

  • Hua, X., Ohlemüller, R. & Sirguey, P. Differential effects of topography on the timing of the growing season in mountainous grassland ecosystems. Environ. Adv. 8, 100234 (2022).

    Google Scholar 

  • Xie, J. et al. Land surface phenology and greenness in Alpine grasslands driven by seasonal snow and meteorological factors. Sci. Total Environ. 725, 138380 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Carlson, B. Z., Choler, P., Renaud, J., Dedieu, J.-P. & Thuiller, W. Modelling snow cover duration improves predictions of functional and taxonomic diversity for alpine plant communities. Ann. Bot. 116, 1023–1034 (2015).

    PubMed Central 

    Google Scholar 

  • Beniston, M. et al. The European mountain cryosphere: A review of its current state, trends, and future challenges. Cryosphere 12, 759–794 (2018).

    ADS 

    Google Scholar 

  • Stöckli, R. & Vidale, P. L. European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset. Int. J. Remote Sens. 25, 3303–3330 (2004).

    Google Scholar 

  • Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Fazeli Farsani, I., Farzaneh, M. R., Besalatpour, A. A., Salehi, M. H. & Faramarzi, M. Assessment of the impact of climate change on spatiotemporal variability of blue and green water resources under CMIP3 and CMIP5 models in a highly mountainous watershed. Theor. Appl. Climatol. 136, 169–184 (2019).

    ADS 

    Google Scholar 

  • Kharin, V. V., Zwiers, F. W., Zhang, X. & Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim. Change 119, 345–357 (2013).

    ADS 

    Google Scholar 

  • Engler, R. et al. 21st century climate change threatens mountain flora unequally across Europe. Glob. Change Biol. 17, 2330–2341 (2011).

    ADS 

    Google Scholar 

  • Qiao, D. & Wang, N. Relationship between winter snow cover dynamics, climate and spring grassland vegetation phenology in Inner Mongolia, China. ISPRS Int. J. Geo-Inf. 8, 42 (2019).

    Google Scholar 

  • Zong, S. et al. Upward range shift of a dominant alpine shrub related to 50 years of snow cover change. Remote Sens. Environ. 268, 112773 (2022).

    ADS 

    Google Scholar 

  • Ernakovich, J. G. et al. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob. Change Biol. 20, 3256–3269 (2014).

    ADS 

    Google Scholar 

  • Zheng, J., Jia, G. & Xu, X. Earlier snowmelt predominates advanced spring vegetation greenup in Alaska. Agric. For. Meteorol. 315, 108828 (2022).

    ADS 

    Google Scholar 

  • Dedieu, J.-P. et al. On the importance of high-resolution time series of optical imagery for quantifying the effects of snow cover duration on alpine plant habitat. Remote Sens. 8, 481 (2016).

    ADS 

    Google Scholar 

  • Virtanen, T. & Ek, M. The fragmented nature of tundra landscape. Int. J. Appl. Earth Obs. Geoinf. 27, 4–12 (2014).

    ADS 

    Google Scholar 

  • Fontana, F., Rixen, C., Jonas, T., Aberegg, G. & Wunderle, S. Alpine grassland phenology as seen in AVHRR, VEGETATION, and MODIS NDVI time series—A comparison with in situ measurements. Sensors 8, 2833–2853 (2008).

    ADS 
    PubMed Central 

    Google Scholar 

  • Carlson, B. Z. et al. Observed long-term greening of alpine vegetation—A case study in the French Alps. Environ. Res. Lett. 12, 114006 (2017).

    ADS 

    Google Scholar 

  • Tomaszewska, M. A., Nguyen, L. H. & Henebry, G. M. Land surface phenology in the highland pastures of montane Central Asia: Interactions with snow cover seasonality and terrain characteristics. Remote Sens. Environ. 240, 111675 (2020).

    ADS 

    Google Scholar 

  • Rumpf, S. B. et al. From white to green: Snow cover loss and increased vegetation productivity in the European Alps. Science 376, 1119–1122 (2022).

    ADS 
    CAS 

    Google Scholar 

  • Myneni, R. B. & Williams, D. L. On the relationship between FAPAR and NDVI. Remote Sens. Environ. 49, 200–211 (1994).

    ADS 

    Google Scholar 

  • Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).

    Google Scholar 

  • Asam, S. et al. Relationship between spatiotemporal variations of climate, snow cover and plant phenology over the alps—An earth observation-based analysis. Remote Sens. 10, 1757 (2018).

    ADS 

    Google Scholar 

  • Rossini, M. et al. Remote sensing-based estimation of gross primary production in a subalpine grassland. Biogeosciences 9, 2565–2584 (2012).

    ADS 

    Google Scholar 

  • Dozier, J. Spectral signature of alpine snow cover from the landsat thematic mapper. Remote Sens. Environ. 28, 9–22 (1989).

    ADS 

    Google Scholar 

  • Hall, D. K. & Riggs, G. A. Accuracy assessment of the MODIS snow products. Hydrol. Process. 21, 1534–1547 (2007).

    ADS 

    Google Scholar 

  • Julitta, T. et al. Using digital camera images to analyse snowmelt and phenology of a subalpine grassland. Agric. For. Meteorol. 198–199, 116–125 (2014).

    ADS 

    Google Scholar 

  • Francon, L. et al. Assessing the effects of earlier snow melt-out on alpine shrub growth: The sooner the better?. Ecol. Ind. 115, 106455 (2020).

    Google Scholar 

  • Assmann, J. J., Myers-Smith, I. H., Kerby, J. T., Cunliffe, A. M. & Daskalova, G. N. Drone data reveal heterogeneity in tundra greenness and phenology not captured by satellites. Environ. Res. Lett. 15, 125002 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Revuelto, J. et al. Meteorological and snow distribution data in the Izas Experimental Catchment (Spanish Pyrenees) from 2011 to 2017. Earth Syst. Sci. Data 9, 993–1005 (2017).

    ADS 

    Google Scholar 

  • Nadal Romero, E. et al. Sediment balance in four small catechumen’s with different land cover in the Central Pyrenes (Spain). (2009).

  • Gartzia, M., Alados, C. L. & Pérez-Cabello, F. Assessment of the effects of biophysical and anthropogenic factors on woody plant encroachment in dense and sparse mountain grasslands based on remote sensing data. Progr. Phys. Geogr. Earth Environ. 38, 201–217 (2014).

    Google Scholar 

  • Fillat, F., González, R. G., García, D. G., Gómez, D. & Reiné, R. Pastos del Pirineo. (Editorial CSIC-CSIC Press, 2008).

  • Gómez-García, D., Ferrández, J. V., Tejero, P. & Font, X. Spatial distribution and environmental analysis of the alpine flora in the Pyrenees. Pirineos 172, e027–e027 (2017).

    Google Scholar 

  • Gascoin, S. et al. A snow cover climatology for the Pyrenees from MODIS snow products. Hydrol. Earth Syst. Sci. 19, 2337–2351 (2015).

    ADS 

    Google Scholar 

  • López-Moreno, J. I. et al. Different sensitivities of snowpacks to warming in Mediterranean climate mountain areas. Environ. Res. Lett. 12, 074006 (2017).

    ADS 

    Google Scholar 

  • Cernusca, A. Standörtliche Variabilität in Mikroklima und Energiehaushalt Alpiner Zwergstrauchbestände. In Verhandlungen der Gesellschaft für Ökologie Wien 1975: 5. Jahresversammlung vom 22. bis 24. September 1975 in Wien (ed. Müller, P.) 9–21 (Springer Netherlands, 1976). https://doi.org/10.1007/978-94-015-7168-5_2.

  • Cernusca, A. & Seeber, M. C. Canopy structure, microclimate and the energy budget in different alpine plant communities. In Symposium—British Ecological Society (1981).

  • Kudo, G., Nordenhäll, U. & Molau, U. Effects of snowmelt timing on leaf traits, leaf production, and shoot growth of alpine plants: Comparisons along a snowmelt gradient in northern Sweden. Écoscience 6, 439–450 (1999).

    Google Scholar 

  • Baptist, F. & Choler, P. A simulation of the importance of length of growing season and canopy functional properties on the seasonal gross primary production of temperate alpine meadows. Ann. Bot. 101, 549–559 (2008).

    PubMed Central 

    Google Scholar 

  • Baptist, F., Flahaut, C., Streb, P. & Choler, P. No increase in alpine snowbed productivity in response to experimental lengthening of the growing season. Plant Biol. 12, 755–764 (2010).

    CAS 

    Google Scholar 

  • Wipf, S., Rixen, C. & Mulder, C. P. H. Advanced snowmelt causes shift towards positive neighbour interactions in a subarctic tundra community. Glob. Change Biol. 12, 1496–1506 (2006).

    ADS 

    Google Scholar 

  • Sierra-Almeida, A. & Cavieres, L. A. Summer freezing resistance decreased in high-elevation plants exposed to experimental warming in the central Chilean Andes. Oecologia 163, 267–276 (2010).

    ADS 

    Google Scholar 

  • Camarero, J. J., Gutiérrez, E. & Fortin, M.-J. Spatial pattern of subalpine forest-alpine grassland ecotones in the Spanish Central Pyrenees. For. Ecol. Manag. 134, 1–16 (2000).

    Google Scholar 

  • Dadic, R., Mott, R., Lehning, M. & Burlando, P. Parameterization for wind-induced preferential deposition of snow. Hydrol. Process. 24, 1994–2006 (2010).

    Google Scholar 

  • Vionnet, V. et al. Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model. Cryosphere 8, 395–415 (2014).

    ADS 

    Google Scholar 

  • Burns, S. F., Tonkin, P. J. & Thorn, C. E. Soil-geomorphic models and the spatial distribution and development of alpine soils. In Space and Time in Geomorphology: Binghamton Geomorphology Symposium, vol. 12 (2020).

  • Lana-Renault, N. et al. Comparative analysis of the response of various land covers to an exceptional rainfall event in the central Spanish Pyrenees, October 2012. Earth Surf. Proc. Land. 39, 581–592 (2014).

    ADS 

    Google Scholar 

  • Freppaz, M., Williams, B. L., Edwards, A. C., Scalenghe, R. & Zanini, E. Simulating soil freeze/thaw cycles typical of winter alpine conditions: Implications for N and P availability. Appl. Soil. Ecol. 35, 247–255 (2007).

    Google Scholar 

  • López-Moreno, J. I. et al. Long-term trends (1958–2017) in snow cover duration and depth in the Pyrenees. Int. J. Climatol. 40, 6122–6136 (2020).

    Google Scholar 

  • López-Moreno, J. I., Vicente-Serrano, S. M. & Lanjeri, S. Mapping snowpack distribution over large areas using GIS and interpolation techniques. Clim. Res. 33, 257–270 (2007).

    Google Scholar 

  • Revuelto, J., López-Moreno, J. I. & Alonso-González, E. Light and shadow in mapping alpine snowpack with unmanned aerial vehicles in the absence of ground control points. Water Resour. Res. 57, e2020WR028980 (2021).

    ADS 

    Google Scholar 

  • Eberhard, L. A. et al. Intercomparison of photogrammetric platforms for spatially continuous snow depth mapping. Cryosphere 15, 69–94 (2021).

    ADS 

    Google Scholar 

  • Harder, P., Schirmer, M., Pomeroy, J. & Helgason, W. Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle. Cryosphere 10, 2559–2571 (2016).

    ADS 

    Google Scholar 

  • Stanton, M. L., Rejmánek, M. & Galen, C. Changes in vegetation and soil fertility along a predictable snowmelt gradient in the mosquito range, Colorado, USA. Arct. Alp. Res. 26, 364–374 (1994).

    Google Scholar 

  • Winkler, D. E., Chapin, K. J. & Kueppers, L. M. Soil moisture mediates alpine life form and community productivity responses to warming. Ecology 97, 1553–1563 (2016).

    Google Scholar 

  • Litaor, M. I., Williams, M. & Seastedt, T. R. Topographic controls on snow distribution, soil moisture, and species diversity of herbaceous alpine vegetation, Niwot Ridge, Colorado. J. Geophys. Res. Biogeosci. 113, (2008).

  • Keller, F., Kienast, F. & Beniston, M. Evidence of response of vegetation to environmental change on high-elevation sites in the Swiss Alps. Reg. Environ. Change 1, 70–77 (2000).

    Google Scholar 

  • Running, S. W. Estimating terrestrial primary productivity by combining remote sensing and ecosystem simulation. In Remote Sensing of Biosphere Functioning (eds. Hobbs, R. J. & Mooney, H. A.) 65–86 (Springer, 1990). https://doi.org/10.1007/978-1-4612-3302-2_4.

  • Myneni, R. B., Hall, F. G., Sellers, P. J. & Marshak, A. L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens. 33, 481–486 (1995).

    ADS 

    Google Scholar 

  • Huang, S., Tang, L., Hupy, J. P., Wang, Y. & Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 32, 1–6 (2021).

    Google Scholar 

  • Floyd, D. A. & Anderson, J. E. A comparison of three methods for estimating plant cover. J. Ecol. 75, 221–228 (1987).

    Google Scholar 

  • Peet, R. K. The measurement of species diversity. Annu. Rev. Ecol. Syst. 5, 285–307 (1974).

    Google Scholar 

  • Mouillot, D. & Leprêtre, A. A comparison of species diversity estimators. Res. Popul. Ecol. 41, 203–215 (1999).

    Google Scholar 


  • Source: Ecology - nature.com

    Multiscale imaging on Saxifraga paniculata provides new insights into yttrium uptake by plants

    In nanotube science, is boron nitride the new carbon?