in

Exploring Natura 2000 habitats by satellite image segmentation combined with phytosociological data: a case study from the Čierny Balog area (Central Slovakia)

  • Rocchini, D. et al. Measuring β-diversity by remote sensing: A challenge for biodiversity monitoring. Methods Ecol. Evol. 9(8), 1787–1798 (2018).

    Article 

    Google Scholar 

  • Pettorelli, N. et al. Satellite remote sensing of ecosystem functions: Opportunities, challenges and way forward. Remote Sensing in Ecology and Conservation 4(2), 71–93 (2018).

    Article 

    Google Scholar 

  • Corbane, C. et al. Remote sensing for mapping natural habitats and their conservation status–New opportunities and challenges. Int. J. Appl. Earth Obs. Geoinf. 37, 7–16 (2015).

    ADS 

    Google Scholar 

  • Miu, I. V. et al. Identification of areas of very high biodiversity value to achieve the EU Biodiversity Strategy for 2030 key commitments. PeerJ 8, e10067 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Klerk, H., Burgess, N. & Visser, V. Probabilistic description of vegetation ecotones using remote sensing. Eco. Inform. 46, 125–132 (2018).

    Article 

    Google Scholar 

  • Minasny, B. et al. Digital mapping of peatlands–A critical review. Earth Sci. Rev. 196, 102870 (2019).

    Article 

    Google Scholar 

  • Zellweger, F. et al. Advances in microclimate ecology arising from remote sensing. Trends Ecol. Evol. 34(4), 327–341 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, X. et al. New research methods for vegetation information extraction based on visible light remote sensing images from an unmanned aerial vehicle (UAV). Int. J. Appl. Earth Obs. Geoinf. 78, 215–226 (2019).

    ADS 

    Google Scholar 

  • Ullerud, H. A. et al. Consistency in land-cover mapping: Influence of field workers, spatial scale and classification system. Appl. Veg. Sci. 21(2), 278–288 (2018).

    Article 

    Google Scholar 

  • Zhu, Y. et al. Effects of data temporal resolution on phenology extractions from the alpine grasslands of the Tibetan Plateau. Ecol. Ind. 104, 365–377 (2019).

    Article 

    Google Scholar 

  • Huylenbroeck, L. et al. Using remote sensing to characterize riparian vegetation: A review of available tools and perspectives for managers. J. Environ. Manage. 267, 110652 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Fagan, M. E. et al. Mapping species composition of forests and tree plantations in Northeastern Costa Rica with an integration of hyperspectral and multitemporal Landsat imagery. Remote Sensing 7(5), 5660–5696 (2015).

    Article 
    ADS 

    Google Scholar 

  • Waśniewski, A. et al. Assessment of Sentinel-2 satellite images and random forest classifier for rainforest mapping in Gabon. Forests 11(9), 941 (2020).

    Article 

    Google Scholar 

  • Drusch, M. et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 120, 25–36 (2012).

    Article 
    ADS 

    Google Scholar 

  • Chytrý, M. et al. European Vegetation Archive (EVA): An integrated database of European vegetation plots. Appl. Veg. Sci. 19(1), 173–180 (2016).

    Article 

    Google Scholar 

  • Chytrý, M. et al. EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Appl. Veg. Sci. 23(4), 648–675 (2020).

    Article 

    Google Scholar 

  • Šibík, J. Slovak vegetation database. In Dengler J., Oldeland, J., Jansen, F., Chytrý, M., Ewald, J., Finckh, M., Glöckle, RF, Lopez-Gonzalez, G., Peet, R. K. & Schaminée, J. H. J. (eds), Vegetation databases for the 21st century. Biodiversity & Ecology, 2012: p. 429–429.

  • Jarolímek, I., et al. A list of vegetation units of Slovakia. Diagnostic, constant and dominant species of the higher vegetation units of Slovakia. Veda, Bratislava, 2008: p. 295–329.

  • Stanová, V. & Valachovič, M. Katalóg biotopov Slovenska [A catalogue of biotopes of Slovakia] (DAPHNE-Institút aplikovanej ekológie, 2002).

    Google Scholar 

  • Viceníková, A. & Polák, P. Európsky významné biotopy na Slovensku (Štátna ochrana prírody SR v spolupráci s DAPHNE-Inštitút aplikovanej ekológie, 2003).

    Google Scholar 

  • Dymond, C. C., Mladenoff, D. J. & Radeloff, V. C. Phenological differences in Tasseled Cap indices improve deciduous forest classification. Remote Sens. Environ. 80(3), 460–472 (2002).

    Article 
    ADS 

    Google Scholar 

  • Mickelson, J. G., Civco, D. L. & Silander, J. Delineating forest canopy species in the northeastern United States using multi-temporal TM imagery. Photogramm. Eng. Remote. Sens. 64, 891–904 (1998).

    Google Scholar 

  • Nitze, I., Barrett, B. & Cawkwell, F. Temporal optimisation of image acquisition for land cover classification with Random Forest and MODIS time-series. Int. J. Appl. Earth Obs. Geoinf. 34, 136–146 (2015).

    ADS 

    Google Scholar 

  • Prishchepov, A. V. et al. The effect of Landsat ETM/ETM+ image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sens. Environ. 126, 195–209 (2012).

    Article 
    ADS 

    Google Scholar 

  • Saini, M. et al. Hyperspectral data dimensionality reduction and the impact of multi-seasonal Hyperion EO-1 imagery on classification accuracies of tropical forest species. Photogramm. Eng. Remote. Sens. 80(8), 773–784 (2014).

    Article 

    Google Scholar 

  • Wang, L., Silván-Cárdenas, J. L. & Sousa, W. P. Neural network classification of mangrove species from multi-seasonal Ikonos imagery. Photogramm. Eng. Remote. Sens. 74(7), 921–927 (2008).

    Article 

    Google Scholar 

  • Dong, J. et al. Mapping tropical forests and rubber plantations in complex landscapes by integrating PALSAR and MODIS imagery. ISPRS J. Photogramm. Remote. Sens. 74, 20–33 (2012).

    Article 

    Google Scholar 

  • Fan, H. et al. Phenology-based vegetation index differencing for mapping of rubber plantations using Landsat OLI data. Remote Sens. 7(5), 6041–6058 (2015).

    Article 
    ADS 

    Google Scholar 

  • Li, Z. & Fox, J. M. Mapping rubber tree growth in mainland Southeast Asia using time-series MODIS 250 m NDVI and statistical data. Appl. Geogr. 32(2), 420–432 (2012).

    Article 

    Google Scholar 

  • Senf, C. et al. Mapping rubber plantations and natural forests in Xishuangbanna (Southwest China) using multi-spectral phenological metrics from MODIS time series. Remote Sens. 5(6), 2795–2812 (2013).

    Article 
    ADS 

    Google Scholar 

  • Mikula, K. et al. NaturaSat—A software tool for identification, monitoring and evaluation of habitats by remote sensing techniques. Remote Sens. 13(17), 3381 (2021).

    Article 
    ADS 

    Google Scholar 

  • Mikula, K. et al. Semi-automatic segmentation of NATURA 2000 habitats in Sentinel-2 satellite images by evolving open curves. Discrete Contin. Dyn. Syst. S 14(3), 1033 (2021).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Mikula, K. et al. An automated segmentation of NATURA 2000 habitats from Sentinel-2 optical data. Discrete Contin. Dyn. Syst. S 14(3), 1017 (2021).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Klinec, A., Geologická mapa Slovenského rudohoria a Nízkych Tatier (1: 50 000). GÚDŠ, Bratislava, 1976.

  • Lapin, M., et al., Klimatické oblasti [Climatic regions]. Atlas krajiny Slovenskej republiky, 2002. 95.

  • Slamova, M. et al. Historical terraces—Current situation and future perspectives for optimal land use management: The case study of Čierny Balog. Annales 29(1), 85–100 (2019).

    Google Scholar 

  • Geoportal, 2021. https://www.geoportal.sk/sk/geoportal.html. Accessed 22 Feb 2021.

  • Directive, H. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off. J. Eur. Union 206, 7–50 (1992).

    Google Scholar 

  • Barkman, J. J., Doing, H. & Segal, S. Kritische bemerkungen und vorschläge zur quantitativen vegetationsanalyse. Acta Bot. Neerland. 13(3), 394–419 (1964).

    Article 

    Google Scholar 

  • Braun-Blanquet, J. & Pflanzensoziologie, G.d.V. (Springer, Wien, New York, 1964).

  • Westhoff, V. & van der Maarel, E. The Braun-Blanquet approach. In Classification of Plant Communities (ed. Whittaker, R. H.) (Springer, 1973).

    Google Scholar 

  • Hennekens, S. M. & Schaminée, J. H. TURBOVEG, a comprehensive data base management system for vegetation data. J. Veg. Sci. 12(4), 589–591 (2001).

    Article 

    Google Scholar 

  • Tichý, L. JUICE, software for vegetation classification. J. Veg. Sci. 13(3), 451–453 (2002).

    Article 

    Google Scholar 

  • Marhold, K., et al., A list of lower and higher plants of Slovakia. Vydavateľstvo akadémie vied, Bratislava, 1998.

  • Ambroz, M., Kollár, M., & Mikula, K. Semi-implicit scheme for semi-automatic segmentation in Naturasat software. In Proceedings of ALGORITMY (2020).

  • LGIS, 2020. LGIS Lesnícky geografický informačný system (2020). http://gis.nlcsk.org/lgis/. Accessed 1 Sept 2020.

  • Hill, M. TWINSPAN-a FORTRAN program for multivariate data in an ordered two-way table by classification of the individuals and attributes. Ecol. System. (1979).

  • Team, R.C., A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2014. www.r-project.org. Accessed 14 Feb 2019, 2020.

  • Hausdorff, F., Grundzüge der mengenlehre. Vol. 7. 1914: von Veit.

  • Waghmare, B. & Suryawanshi, M. A review-remote sensing. Int. J. Eng. Res. Appl 7(06), 52–54 (2017).

    Google Scholar 

  • Wagner, M. P. & Oppelt, N. Extracting agricultural fields from remote sensing imagery using graph-based growing contours. Remote Sens. 12(7), 1205 (2020).

    Article 
    ADS 

    Google Scholar 

  • Reinermann, S., Asam, S. & Kuenzer, C. Remote sensing of grassland production and management—A review. Remote Sens. 12(12), 1949 (2020).

    Article 
    ADS 

    Google Scholar 

  • Lu, M. et al. Forest types classification based on multi-source data fusion. Remote Sens. 9(11), 1153 (2017).

    Article 
    ADS 

    Google Scholar 

  • Zwiggelaar, R. A review of spectral properties of plants and their potential use for crop/weed discrimination in row-crops. Crop Prot. 17(3), 189–206 (1998).

    Article 

    Google Scholar 

  • Lamb, D. & Brown, R. B. Pa—precision agriculture: Remote-sensing and mapping of weeds in crops. J. Agric. Eng. Res. 78(2), 117–125 (2001).

    Article 

    Google Scholar 

  • Moran, M. S., Inoue, Y. & Barnes, E. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ. 61(3), 319–346 (1997).

    Article 
    ADS 

    Google Scholar 

  • Senf, C., Seidl, R. & Hostert, P. Remote sensing of forest insect disturbances: Current state and future directions. Int. J. Appl. Earth Obs. Geoinf. 60, 49–60 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Avtar, R. et al. Assessing sustainable development prospects through remote sensing: A review. Remote Sens. Appl. Soc. Environ. 20, 100402 (2020).

    Google Scholar 

  • Borre, J. V. et al. Integrating remote sensing in Natura 2000 habitat monitoring: Prospects on the way forward. J. Nat. Conserv. 19(2), 116–125 (2011).

    Article 

    Google Scholar 

  • Woodcock, C. E. et al. Transitioning from change detection to monitoring with remote sensing: A paradigm shift. Remote Sens. Environ. 238, 111558 (2020).

    Article 
    ADS 

    Google Scholar 

  • Foody, G. Fuzzy modelling of vegetation from remotely sensed imagery. Ecol. Model. 85(1), 3–12 (1996).

    Article 

    Google Scholar 

  • Nagendra, H. Using remote sensing to assess biodiversity. Int. J. Remote Sens. 22(12), 2377–2400 (2001).

    Article 

    Google Scholar 

  • Zlinszky, A. et al. Mapping Natura 2000 habitat conservation status in a pannonic salt steppe with airborne laser scanning. Remote Sens. 7(3), 2991–3019 (2015).

    Article 
    ADS 

    Google Scholar 

  • Feilhauer, H. et al. Mapping the local variability of Natura 2000 habitats with remote sensing. Appl. Veg. Sci. 17(4), 765–779 (2014).

    Article 

    Google Scholar 

  • Thanh Noi, P. & Kappas, M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors 18(1), 18 (2017).

    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • Da Ponte, E. et al. Assessing forest cover dynamics and forest perception in the Atlantic Forest of Paraguay, combining remote sensing and household level data. Forests 8(10), 389 (2017).

    Article 

    Google Scholar 

  • Cheng, K. & Wang, J. Forest type classification based on integrated spectral-spatial-temporal features and random forest algorithm—A case study in the qinling mountains. Forests 10(7), 559 (2019).

    Article 

    Google Scholar 

  • Laurin, G. V. et al. Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data. Remote Sens. Environ. 176, 163–176 (2016).

    Article 
    ADS 

    Google Scholar 

  • Erinjery, J. J., Singh, M. & Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sens. Environ. 216, 345–354 (2018).

    Article 
    ADS 

    Google Scholar 

  • Navarro, J. A. et al. Integration of UAV, Sentinel-1, and Sentinel-2 data for mangrove plantation aboveground biomass monitoring in Senegal. Remote Sens. 11(1), 77 (2019).

    Article 
    ADS 

    Google Scholar 

  • Sothe, C. et al. Evaluating Sentinel-2 and Landsat-8 data to map sucessional forest stages in a subtropical forest in Southern Brazil. Remote Sens. 9(8), 838 (2017).

    Article 
    ADS 

    Google Scholar 

  • Mikula, K., et al., Natural Numerical Networks for Natura 2000 habitats classification by satellite images. arXiv preprint arXiv:2108.04327, 2021.

  • Bruelheide, H. et al. sPlot—A new tool for global vegetation analyses. J. Veg. Sci. 30(2), 161–186 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    In nanotube science, is boron nitride the new carbon?

    Machine learning facilitates “turbulence tracking” in fusion reactors