in

Strategies of protected area use by Asian elephants in relation to motivational state and social affiliations

  • Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).

    Article 

    Google Scholar 

  • McDonald-Madden, E. et al. ‘True’ conservation progress. Science 323, 43–44 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Corson, C. et al. Everyone’s Solution? Defining and redefining protected areas at the Convention on Biological Diversity. Conservation and Society 190–202. https://www.jstor.org/stable/26393154?seq=1#metadata_info_tab_contents (Accessed 1st March 2022) (2014).

  • Caro, T. & Berger, J. Can behavioural ecologists help establish protected areas?. Philos. Trans. R. Soc. B 374, 20180062 (2019).

    Article 

    Google Scholar 

  • Barnes, M. D. et al. Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. Nat. Commun. 7, 12747 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Watson, J. E. M. et al. Bolder science needed now for protected areas. Conserv. Biol. 30, 243–248 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Joppa, L. N. & Pfaff, A. High and far: Biases in the location of protected areas. PLoS One 4, e8273 (2009).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Runge, C. A., Martin, T. G., Possingham, H. P., Willis, S. G. & Fuller, R. A. Conserving mobile species. Front. Ecol. Environ. 12, 395–402 (2014).

    Article 

    Google Scholar 

  • Thirgood, S. et al. Can parks protect migratory ungulates? The case of the Serengeti wildebeest. Anim. Conserv. 7, 113–120 (2004).

    Article 

    Google Scholar 

  • Craigie, I. D. et al. Large mammal population declines in Africa’s protected areas. Biol. Conserv. 143, 2221–2228 (2010).

    Article 

    Google Scholar 

  • Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).

    Article 

    Google Scholar 

  • Hansen, A. J. & DeFries, R. Ecological mechanisms linking protected areas to surrounding lands. Ecol. Appl. 17, 974–988 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Beresford, A. E. et al. Poor overlap between the distribution of Protected Areas and globally threatened birds in Africa. Anim. Conserv. 14, 99–107 (2011).

    Article 

    Google Scholar 

  • Haynes, G. Elephants (and extinct relatives) as earth-movers and ecosystem engineers. Geomorphology 157–158, 99–107 (2012).

    Article 
    ADS 

    Google Scholar 

  • Terborgh, J., Davenport, L. C., Ong, L. & Campos-Arceiz, A. Foraging impacts of Asian megafauna on tropical rain forest structure and biodiversity. Biotropica 50, 84–89 (2018).

    Article 

    Google Scholar 

  • Galanti, V., Preatoni, D., Martinoli, A., Wauters, L. A. & Tosi, G. Space and habitat use of the African elephant in the Tarangire-Manyara ecosystem, Tanzania: Implications for conservation. Mamm. Biol. 71, 99–114 (2006).

    Article 

    Google Scholar 

  • Williams, C. et al. Elephas maximus. The IUCN Red List of Threatened Species. e.T7140A45818198. https://doi.org/10.2305/IUCN.UK.2020-3.RLTS.T7140A45818198.en. Accessed on 15 February 2022. (2020)

  • Stokke, S. & Du Toit, J. T. Sexual segregation in habitat use by elephants in Chobe National Park, Botswana. Afr. J. Ecol. 40, 360–371 (2002).

    Article 

    Google Scholar 

  • Chowdhury, S. et al. Protected areas in South Asia: Status and prospects. Sci. Total Environ. 811, 152316 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Goswami, V. R. et al. Community-managed forests and wildlife-friendly agriculture play a subsidiary but not substitutive role to protected areas for the endangered Asian elephant. Biol. Conserv. 177, 74–81 (2014).

    Article 

    Google Scholar 

  • Fernando, C., Weston, M. A., Corea, R., Pahirana, K. & Rendall, A. R. Asian elephant movements between natural and human-dominated landscapes mirror patterns of crop damage in Sri Lanka. Oryx https://doi.org/10.1017/S0030605321000971 (2022).

    Article 

    Google Scholar 

  • Santini, L., Saura, S. & Rondinini, C. Connectivity of the global network of protected areas. Divers. Distrib. 22, 199–211 (2016).

    Article 

    Google Scholar 

  • Brennan, A. et al. Functional connectivity of the world’s protected areas. Science 376, 1101–1104 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kumar, M. A. & Singh, M. Behavior of Asian elephant (Elephas maximus) in a land-use mosaic: Implications for human-elephant coexistence in the Anamalai Hills, India. Wildl. Biol. Pract. 6, 69–80 (2010).

    Google Scholar 

  • Rathnayake, C. W. M., Jones, S., Soto-Berelov, M. & Wallace, L. Human–elephant conflict and land cover change in Sri Lanka. Appl. Geogr. 143, 102685 (2022).

    Article 

    Google Scholar 

  • Chan, A. N. et al. Landscape characteristics influence ranging behavior of Asian elephants at the human-wildlands interface in Myanmar. Mov. Ecol. 10, 1–15 (2022).

    Article 

    Google Scholar 

  • Magioli, M. et al. Land-use changes lead to functional loss of terrestrial mammals in a Neotropical rainforest. Perspect. Ecol. 19, 161–170 (2021).

    Google Scholar 

  • Fernando, P. et al. The future of Asian elephant conservation: Setting sights beyond protected area boundaries. in Conservation Biology in Asia 252–260 (2006).

  • Kumar, M. A., Vijayakrishnan, S. & Singh, M. Whose habitat is it anyway? Role of natural and anthropogenic habitats in conservation of charismatic species. Trop. Conserv. Sci. 11, 194008291878845 (2018).

    Article 

    Google Scholar 

  • Sirua, H. Nature above people: Rolston and “fortress” conservation in the South. Ethics Environ. 11, 71–96 (2006).

    Article 

    Google Scholar 

  • Keerthipriya, P. et al. Musth and its effects on male–male and male–female associations in Asian elephants. J. Mammal. 101, 259–270 (2020).

    Article 

    Google Scholar 

  • Eisenberg, J. F., Mckay, G. M. & Jainudeen, M. R. Reproductive behavior of the Asiatic elephant (Elephas maximus maximus). Behaviour 38, 193–225 (1971).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fernando, P. et al. Ranging behavior of the Asian elephant in Sri Lanka. Mamm. Biol. Zeitschrift für Säugetierkd. 73, 2–13 (2008).

    Article 

    Google Scholar 

  • Hollister-Smith, J. A., Alberts, S. C. & Rasmussen, L. E. L. Do male African elephants, Loxodonta africana, signal musth via urine dribbling?. Anim. Behav. 76, 1829–1841 (2008).

    Article 

    Google Scholar 

  • LaDue, C. A., Vandercone, R. P. G., Kiso, W. K. & Freeman, E. W. Behavioral characterization of musth in Asian elephants (Elephas maximus): Defining progressive stages of male sexual behavior in in-situ and ex-situ populations. Appl. Anim. Behav. Sci. 251, 105639 (2022).

    Article 

    Google Scholar 

  • LaDue, C. A., Goodwin, T. E. & Schulte, B. A. Concentration-dependent chemosensory responses towards pheromones are influenced by receiver attributes in Asian elephants. Ethology 124, 387–399 (2018).

    Article 

    Google Scholar 

  • Goldenberg, S. Z., de Silva, S., Rasmussen, H. B., Douglas-Hamilton, I. & Wittemyer, G. Controlling for behavioural state reveals social dynamics among male African elephants, Loxodonta africana. Anim. Behav. 95, 111e119 (2014).

    Article 

    Google Scholar 

  • Chave, E. et al. Variation in metabolic factors and gonadal, pituitary, thyroid, and adrenal hormones in association with musth in African and Asian elephant bulls. Gen. Comp. Endocrinol. 276, 1–13 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Glaeser, S. S. et al. Characterization of longitudinal testosterone, ocrtisol, and musth in male Asian Elephants (Elephas maximus), effects of aging, and adrenal responses to social changes and health events. Animals 12, 1332 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Silva, S., Ranjeewa, A. D. G. & Kryazhimskiy, S. The dynamics of social networks among female Asian elephants. BMC Ecol. 11, 17 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nandini, S., Keerthipriya, P. & Vidya, T. N. C. Group size differences may mask underlying similarities in social structure: A comparison of female elephant societies. Behav. Ecol. 29, 145–159 (2018).

    Article 

    Google Scholar 

  • de Silva, S. & Wittemyer, G. A comparison of social organization in Asian elephants and African Savannah elephants. Int. J. Primatol. 33, 1125–1141 (2012).

    Article 

    Google Scholar 

  • Nandini, S., Keerthipriya, P. & Vidya, T. N. C. Seasonal variation in female Asian elephant social structure in Nagarahole-Bandipur, southern India. Anim. Behav. 134, 135–145 (2017).

    Article 

    Google Scholar 

  • de Silva, S., Schmid, V. & Wittemyer, G. Fission-fusion processes weaken dominance networks among female Asian elephants in a productive habitat. Behav. Ecol. 28, 243–252 (2017).

    Article 

    Google Scholar 

  • de Silva, S., Ranjeewa, A. D. G. & Weerakoon, D. Demography of Asian elephants (Elephas maximus) at Uda Walawe National Park, Sri Lanka based on identified individuals. Biol. Conserv. 144, 1742–1752 (2011).

    Article 

    Google Scholar 

  • Ginsberg, J. R. & Young, T. P. Measuring association between individuals or groups in behavioural studies. Anim. Behav. 44, 377–379 (1992).

    Article 

    Google Scholar 

  • Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal, Complex Syst. 5, 1–9 (2014).

    Google Scholar 

  • Liechti, J. I. & Bonhoeffer, S. A time resolved clustering method revealing longterm structures and their short-term internal dynamics. arXiv:1912.04261 (2020).

  • Farine, D. R. & Whitehead, H. Constructing, conducting and interpreting animal social network analysis. J. Anim. Ecol. 84, 1144–1163 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wikramanayake, E. D. et al. An ecology-based method for defining priorities for large mammal conservation: The tiger as case study. Conserv. Biol. 12, 865–878 (2008).

    Article 

    Google Scholar 

  • Chundawat, R. S., Sharma, K., Gogate, N., Malik, P. K. & Vanak, A. T. Size matters: Scale mismatch between space use patterns of tigers and protected area size in a tropical dry forest. Biol. Conserv. 197, 146–153 (2016).

    Article 

    Google Scholar 

  • Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Karanth, K. K. & DeFries, R. Nature-based tourism in Indian protected areas: New challenges for park management. Conserv. Lett. 4, 137–149 (2011).

    Article 

    Google Scholar 

  • Brown, J. L. et al. Comparative endocrinology of testicular, adrenal and thyroid function in captive Asian and African elephant bulls. Gen. Comp. Endocrinol. 151, 153–162 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Slotow, R. et al. Older bull elephants control young males. Nature 408, 425–426 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Poole, J. H., Lee, P. C., Njiraini, N. & & Moss, C. J. Longevity, competition, and musth: A long-term perspective on male reproductive strategies. in The Amboseli Elephants: A Long‐Term Perspective on a Long‐Lived Mammal 272–286 (2011).

  • Poole, J. H. Announcing intent: The aggressive state of musth in African elephants. Anim. Behav. 37, 153–155 (1989).

    Article 

    Google Scholar 

  • Poole, J. H. Mate guarding, reproductive success and female choice in African elephants. Anim. Behav. 37, 842–849 (1989).

    Article 

    Google Scholar 

  • Poole, J. H. Rutting behavior in elephants: The phenomenon of musth in African elephants. Anim. Behav. 102, 283–316 (1987).

    Google Scholar 

  • Foley, A. M. et al. Reproductive effort and success of males in scramble-competition polygyny: Evidence for trade-offs between foraging and mate search. J. Anim. Ecol. 87, 1600–1614 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Fernando, P., Leimgruber, P., Prasad, T. & Pastorini, J. Problem-elephant translocation: Translocating the problem and the elephant?. PLoS One 7, e50917 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Archie, E. A., Morrison, T. A., Foley, C. A. H., Moss, C. J. & Alberts, S. C. Dominance rank relationships among wild female African elephants, Loxodonta africana. Anim. Behav. 71, 117–127 (2006).

    Article 

    Google Scholar 

  • Wittemyer, G. & Getz, W. M. Hierarchical dominance structure and social organization in African elephants, Loxodonta africana. Anim. Behav. 73, 671–681 (2007).

    Article 

    Google Scholar 

  • Wittemyer, G., Getz, W. M., Vollrath, F. & Douglas-Hamilton, I. Social dominance, seasonal movements, and spatial segregation in African elephants: A contribution to conservation behavior. Behav. Ecol. Sociobiol. 61, 1919–1931 (2007).

    Article 

    Google Scholar 

  • Gunaryadi, D., Sugiyo, & Hedges, S. Community-based human-elephant conflict mitigation: The value of an evidence-based approach in promoting the uptake of effective methods. PLoS One 12, e0173742 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilson, G. et al. Between a rock and a hard place: Rugged terrain features and human disturbance affect behaviour and habitat use of Sumatran elephants in Aceh, Sumatra, Indonesia. Biodivers. Conserv. 30, 597–618 (2021).

    Article 

    Google Scholar 

  • de Silva, S. et al. Demographic variables for wild Asian elephants using longitudinal observations. PLoS One 8, e82788 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • LaDue, C. A., Eranda, I., Jayasinghe, C. & Vandercone, R. P. G. Mortality patterns of Asian elephants in a region of human–elephant conflict. J. Wildl. Manag. 85, 794–802 (2021).

    Article 

    Google Scholar 

  • Ram, A. K. et al. Tracking forest loss and fragmentation between 1930 and 2020 in Asian elephant (Elephas maximus) range in Nepal. Sci. Rep. 11, 1–13 (2021).

    Article 
    ADS 

    Google Scholar 

  • Neupane, D., Kwon, Y., Risch, T. S. & Johnson, R. L. Changes in habitat suitability over a two decade period before and after Asian elephant recolonization. Glob. Ecol. Conserv. 22, e01023 (2020).

    Article 

    Google Scholar 

  • de Silva, S. & Leimgruber, P. Demographic tipping points as early indicators of vulnerability for slow-breeding megafaunal populations. Front. Ecol. Evol. 7, 171 (2019).

    Article 

    Google Scholar 

  • Rodrigo, M. Farmers move to occupy a critical elephant corridor in Sri Lanka. Mongabay (2021).

  • de la Torre, J. A. et al. There will be conflict—Agricultural landscapes are prime, rather than marginal, habitats for Asian elephants. Anim. Conserv. 24, 720–732 (2021).

    Article 

    Google Scholar 

  • Rood, E., Ganie, A. A. & Nijman, V. Using presence-only modelling to predict Asian elephant habitat use in a tropical forest landscape: Implications for conservation. Divers. Distrib. 16, 975–984 (2010).

    Article 

    Google Scholar 

  • Evans, L. J., Goossens, B., Davies, A. B., Reynolds, G. & Asner, G. P. Natural and anthropogenic drivers of Bornean elephant movement strategies. Glob. Ecol. Conserv. 22, e00906 (2020).

    Article 

    Google Scholar 

  • Morales-Hidalgo, D., Oswalt, S. N. & Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. For. Ecol. Manag. 352, 68–77 (2015).

    Article 

    Google Scholar 

  • Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl. Acad. Sci. U.S.A. 118, 1–8 (2021).

    Article 

    Google Scholar 

  • Goswami, V. R., Vasudev, D. & Oli, M. K. The importance of conflict-induced mortality for conservation planning in areas of human–elephant co-occurrence. Biol. Conserv. 176, 191–198 (2014).

    Article 

    Google Scholar 

  • de Silva, S. & Leimgruber, P. Demographic tipping points as early indicators of vulnerability for slow-breeding megafaunal populations. Front. Ecol. Evol. 7, 1–13 (2019).

    Article 
    CAS 

    Google Scholar 

  • Hettiarachchi, K. ‘Gathering’ shuns ‘brimming’ Minneriya. The Sunday Times (2021).

  • Srinivasaiah, N., Kumar, V., Vaidyanathan, S., Sukumar, R. & Sinha, A. All-male groups in Asian elephants: A novel, adaptive social strategy in increasingly anthropogenic landscapes of southern India. Sci. Rep. 9, 1–11 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • de Silva, E. M. K. et al. Feasibility of using convolutional neural networks for individual-identification of wild Asian elephants. Mamm. Biol. https://doi.org/10.1007/S42991-021-00206-2 (2022).

    Article 

    Google Scholar 

  • de Silva, S. The Elephant Attribute Recording System (EARS): A tool for individual-based research on Asian elephants. Gajah 40, 46 (2014).

    Google Scholar 

  • Jainudeen, M. R., Katongole, C. B. & Short, R. V. Plasma testosterone levels in relation to musth and sexual activity in the male Asiatic elephant, Elephas maximus. J. Reprod. Fertil. 29, 99–103 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Farine, D. R. Animal social network inference and permutations for ecologists in R using asnipe. Methods Ecol. Evol. 4, 1187–1194 (2013).

    Article 

    Google Scholar 

  • Whitehead, H. Analyzing Animal Societies (University of Chicago Press, 2008).

    Book 

    Google Scholar 

  • Bates, D., Mächler, M., Bolker, B., & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).

    Article 

    Google Scholar 

  • Dekker, D., Krackhardt, D. & Snijders, T. A. B. Sensitivity of MRQAP tests to collinearity and autocorrelation conditions. Psychometrika 72, 563–581 (2007).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    Machine learning facilitates “turbulence tracking” in fusion reactors

    Methane research takes on new urgency at MIT