in

Hydroclimatic vulnerability of peat carbon in the central Congo Basin

  • Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 86–90 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Crezee, B. et al. Mapping peat thickness and carbon stocks of the central Congo Basin using field data. Nat. Geosci. 15, 639–644 (2022).

  • Runge, J. in Large Rivers (ed. Gupta, A.) 293–309 (Wiley, 2008).

  • Davenport, I. J. et al. First evidence of peat domes in the Congo Basin using LiDAR from a fixed-wing drone. Remote Sens. 12, 2196 (2020).

    Article 
    ADS 

    Google Scholar 

  • Dargie, G. C. et al. Congo Basin peatlands: threats and conservation priorities. Mitig. Adapt. Strateg. Glob. Chang. 24, 669–686 (2018).

  • Young, D. M. et al. Misinterpreting carbon accumulation rates in records from near-surface peat. Sci. Rep. 9, 17939 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Young, D. M., Baird, A. J., Gallego-Sala, A. V. & Loisel, J. A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores. Sci. Rep. 11, 9547 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sebag, D. et al. Monitoring organic matter dynamics in soil profiles by ‘Rock-Eval pyrolysis’: bulk characterization and quantification of degradation. Eur. J. Soil Sci. 57, 344–355 (2006).

    Article 
    CAS 

    Google Scholar 

  • Sebag, D. et al. Dynamics of soil organic matter based on new Rock-Eval indices. Geoderma 284, 185–203 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Girkin, N. T. et al. Spatial variability of organic matter properties determines methane fluxes in a tropical forested peatland. Biogeochemistry 142, 231–245 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dargie, G. C. Quantifying and Understanding the Tropical Peatlands of the Central Congo Basin. PhD thesis, Univ. Leeds (2015).

  • Spiker, E. C. & Hatcher, P. G. Carbon isotope fractionation of sapropelic organic matter during early diagenesis. Org. Geochem. 5, 283–290 (1984).

    Article 
    CAS 

    Google Scholar 

  • Chave, J. et al. Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7, 43–55 (2010).

    Article 
    ADS 

    Google Scholar 

  • Dommain, R. et al. Forest dynamics and tip-up pools drive pulses of high carbon accumulation rates in a tropical peat dome in Borneo (Southeast Asia). J. Geophys. Res. 120, 617–640 (2015).

    Article 
    CAS 

    Google Scholar 

  • Wotzka, H.-P. in Grundlegungen: Beiträge zur europäischen und afrikanischen Archäologie fűr Manfred K. H. Eggert (ed. Wotzka, H.-P.) 271–289 (Francke, 2006).

  • Saulieu, G. D. et al. Archaeological evidence for population rise and collapse between ~2500 and ~500 cal. yr BP in Western Central Africa. Afr. Archéol. Arts 17, 11–32 (2021).

    Google Scholar 

  • Sachse, D. et al. Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu. Rev. Earth Planet. Sci. 40, 221–249 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Collins, J. A. et al. Estimating the hydrogen isotopic composition of past precipitation using leaf-waxes from western Africa. Quat. Sci. Rev. 65, 88–101 (2013).

    Article 
    ADS 

    Google Scholar 

  • Schefuß, E., Schouten, S. & Schneider, R. R. Climatic controls on central African hydrology during the past 20,000 years. Nature 437, 1003–1006 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Kelly, T. J. et al. The vegetation history of an Amazonian domed peatland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468, 129–141 (2017).

    Article 

    Google Scholar 

  • Swindles, G. T. et al. Ecosystem state shifts during long-term development of an Amazonian peatland. Global Change Biol. 24, 738–757 (2018).

    Article 
    ADS 

    Google Scholar 

  • Dommain, R., Couwenberg, J. & Joosten, H. Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quat. Sci. Rev. 30, 999–1010 (2011).

    Article 
    ADS 

    Google Scholar 

  • Lottes, A. L. & Ziegler, A. M. World peat occurrence and the seasonality of climate and vegetation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 106, 23–37 (1994).

    Article 

    Google Scholar 

  • Moutsamboté, J. M. Ecological, Phytogeographic and Phytosociological Study of Northern Congo (Plateaus, Bowls, Likouala and Sangha). PhD thesis, Univ. Marien Ngouabi (2012).

  • Dingman, S. L. Fluvial Hydrology (W. H. Freeman, 1984).

  • Swindles, G. T., Morris, P. J., Baird, A. J., Blaauw, M. & Plunkett, G. Ecohydrological feedbacks confound peat-based climate reconstructions. Geophys. Res. Lett. 39, L11401 (2012).

    Article 
    ADS 

    Google Scholar 

  • Morris, P. J., Baird, A. J., Young, D. M. & Swindles, G. T. Untangling climate signals from autogenic changes in long-term peatland development. Geophys. Res. Lett. 42, 10,788–10,797 (2015).

    Article 

    Google Scholar 

  • Young, D. M., Baird, A. J., Morris, P. J. & Holden, J. Simulating the long-term impacts of drainage and restoration on the ecohydrology of peatlands. Water Resour. Res. 53, 6510–6522 (2017).

    Article 
    ADS 

    Google Scholar 

  • Weldeab, S., Lea, D. W., Schneider, R. R. & Andersen, N. Centennial scale climate instabilities in a wet early Holocene West African monsoon. Geophys. Res. Lett. 34, L24702 (2007).

    Article 
    ADS 

    Google Scholar 

  • Collins, J. A. et al. Rapid termination of the African Humid Period triggered by northern high-latitude cooling. Nat. Commun. 8, 1372 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garcin, Y. et al. Early anthropogenic impact on Western Central African rainforests 2,600 y ago. Proc. Natl. Acad. Sci. USA 115, 3261–3266 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vincens, A. et al. Changement majeur de la végétation du lac Sinnda (vallée du Niari, Sud-Congo) consécutif à l’assèchement climatique holocène supérieur: apport de la palynologie. C. R. Acad. Sci. Paris Sér. II 318, 1521–1526 (1994).

    Google Scholar 

  • Elenga, H. et al. Diagramme pollinique holocène du lac Kitina (Congo): mise en évidence de changements paléobotaniques et paléoclimatiques dans le massif forestier du Mayombe. C. R. Acad. Sci. Paris Sér. II 323, 403–410 (1996).

    CAS 

    Google Scholar 

  • Ngomanda, A., Neumann, K., Schweizer, A. & Maley, J. Seasonality change and the third millennium BP rainforest crisis in southern Cameroon (Central Africa). Quat. Res. 71, 307–318 (2009).

    Article 

    Google Scholar 

  • Maley, J. et al. Late Holocene forest contraction and fragmentation in central Africa. Quat. Res. 89, 43–59 (2018).

    Article 

    Google Scholar 

  • Bayon, G. et al. Intensifying weathering and land use in Iron Age Central Africa. Science 335, 1219–1222 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Giresse, P., Maley, J. & Chepstow-Lusty, A. Understanding the 2500 yr BP rainforest crisis in West and Central Africa in the framework of the Late Holocene: pluridisciplinary analysis and multi-archive reconstruction. Global Planet. Change 192, 103257 (2020).

    Article 

    Google Scholar 

  • Schefuß, E. et al. Hydrologic control of carbon cycling and aged carbon discharge in the Congo River basin. Nat. Geosci. 9, 687–690 (2016).

    Article 
    ADS 

    Google Scholar 

  • Hoyt, A. M., Chaussard, E., Seppalainen, S. S. & Harvey, C. F. Widespread subsidence and carbon emissions across Southeast Asian peatlands. Nat. Geosci. 13, 435–440 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Deshmukh, C. S. et al. Conservation slows down emission increase from a tropical peatland in Indonesia. Nat. Geosci. 14, 484–490 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F. & Fischer, H. A 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing. Earth Syst. Sci. Data 9, 363–387 (2017).

    Article 
    ADS 

    Google Scholar 

  • Jiang, Y. et al. Widespread increase of boreal summer dry season length over the Congo rainforest. Nat. Clim. Change 9, 617–622 (2019).

    Article 

    Google Scholar 

  • Cook, K. H., Liu, Y. & Vizy, E. K. Congo Basin drying associated with poleward shifts of the African thermal lows. Clim. Dyn. 54, 863–883 (2020).

    Article 

    Google Scholar 

  • Bennett, A. C. et al. Resistance of African tropical forests to an extreme climate anomaly. Proc. Natl. Acad. Sci. USA 118, e2003169118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • García-Palacios, P. et al. Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming. Nat. Rev. Earth Environ. 2, 585–585 (2021).

    Article 
    ADS 

    Google Scholar 

  • Cobb, A. R. et al. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands. Proc. Natl. Acad. Sci. USA 114, E5187–E5196 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feng, X., Porporato, A. & Rodriguez-Iturbe, I. Changes in rainfall seasonality in the tropics. Nat. Clim. Change 3, 811–815 (2013).

    Article 
    ADS 

    Google Scholar 

  • Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, J. R., Morris, P. J., Liu, J. G. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena 160, 134–140 (2018).

    Article 

    Google Scholar 

  • Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series analysis. Eos Trans. AGU 77, 379 (1996).

    Article 
    ADS 

    Google Scholar 

  • Blaauw, M. & Christen, J. A. Flexible paleoclimate age–depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Blaauw, M. et al. rbacon: age–depth modelling using Bayesian statistics. R package version 2.5.7 (2021); https://cran.r-project.org/web/packages/rbacon/index.html.

  • Hogg, A. G. et al. SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 62, 759–778 (2020).

    Article 
    CAS 

    Google Scholar 

  • Reimer, P. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 kcal BP). Radiocarbon 62, 725–757 (2020).

    Article 
    CAS 

    Google Scholar 

  • Reuter, H., Gensel, J., Elvert, M. & Zak, D. Evidence for preferential protein depolymerization in wetland soils in response to external nitrogen availability provided by a novel FTIR routine. Biogeosciences 17, 499–514 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kuhry, P. & Vitt, D. H. Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology 77, 271–275 (1996).

    Article 

    Google Scholar 

  • Hornibrook, E. R. C., Longstaffe, F. J. & Fyfe, W. S. Evolution of stable carbon isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments. Geochim. Cosmochim. Acta 64, 1013–1027 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Broder, T., Blodau, C., Biester, H. & Knorr, K. H. Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia. Biogeosciences 9, 1479–1491 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Biester, H., Knorr, K. H., Schellekens, J., Basler, A. & Hermanns, Y. M. Comparison of different methods to determine the degree of peat decomposition in peat bogs. Biogeosciences 11, 2691–2707 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Leifeld, J., Klein, K. & Wüst-Galley, C. Soil organic matter stoichiometry as indicator for peatland degradation. Sci. Rep. 10, 7634 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hodgkins, S. B. et al. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nat. Commun. 9, 3640 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chimner, R. A. & Ewel, K. C. A tropical freshwater wetland: II. Production, decomposition, and peat formation. Wetlands Ecol. Manage. 13, 671–684 (2005).

    Article 

    Google Scholar 

  • Lafargue, E., Marquis, F. & Pillot, D. Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Oil Gas Sci. Technol. 53, 421–437 (1998).

    CAS 

    Google Scholar 

  • Behar, F., Beaumont, V. & Penteado, H. L. D. Rock-Eval 6 technology: performances and developments. Oil Gas Sci. Technol. 56, 111–134 (2001).

    Article 
    CAS 

    Google Scholar 

  • Disnar, J. R., Guillet, B., Keravis, D., Di-Giovanni, C. & Sebag, D. Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: scope and limitations. Org. Geochem. 34, 327–343 (2003).

    Article 
    CAS 

    Google Scholar 

  • Marzi, R., Torkelson, B. E. & Olson, R. K. A revised carbon preference index. Org. Geochem. 20, 1303–1306 (1993).

    Article 
    CAS 

    Google Scholar 

  • Eglinton, G. & Hamilton, R. J. Leaf epicuticular waxes. Science 156, 1322–1334 (1967).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sauer, P. E., Eglinton, T. I., Hayes, J. M., Schimmelmann, A. & Sessions, A. L. Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions. Geochim. Cosmochim. Acta 65, 213–222 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 21, 295–305 (2002).

    Article 
    ADS 

    Google Scholar 

  • Han, J. & Calvin, M. Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments. Proc. Natl. Acad. Sci. U.S.A. 64, 436–443 (1969).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakagawa, T. et al. Dense-media separation as a more efficient pollen extraction method for use with organic sediment/deposit samples: comparison with the conventional method. Boreas 27, 15–24 (1998).

    Article 

    Google Scholar 

  • Stone, B. C. A synopsis of the African Species of Pandanus. Ann. Missouri Bot. Gard. 60, 260–272 (1973).

    Article 

    Google Scholar 

  • African Plant Database (version 3.4.0) (Conservatoire et Jardin Botaniques de la Ville de Genève and South African National Biodiversity Institute, accessed January 2022); http://africanplantdatabase.ch.

  • Polhill, R. M., Nordal, I., Kativu, S. & Poulsen, A. D. Flora of Tropical East Africa 1st edn (CRC Press, 1997).

  • Hawthorne, D. et al. Global Modern Charcoal Dataset (GMCD): a tool for exploring proxy-fire linkages and spatial patterns of biomass burning. Quat. Int. 488, 3–17 (2018).

    Article 

    Google Scholar 

  • Stevenson, J. & Haberle, S. Macro Charcoal Analysis: A Modified Technique Used by the Department of Archaeology and Natural History. Palaeoworks Technical Paper No. 5 (PalaeoWorks, Department of Archaeology and Natural History, Research School of Pacific and Asian Studies, Australian National University, 2005).

  • Tierney, J. E., Pausata, F. S. R. & deMenocal, P. B. Rainfall regimes of the Green Sahara. Sci. Adv. 3, e1601503 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shanahan, T. M. et al. The time-transgressive termination of the African Humid Period. Nat. Geosci. 8, 140–144 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ladd, S. N. et al. Leaf wax hydrogen isotopes as a hydroclimate proxy in the Tropical Pacific. J. Geophys. Res. 126, e2020JG005891 (2021).

    Google Scholar 

  • Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).

    Article 
    ADS 

    Google Scholar 

  • Munksgaard, N. C. et al. Data Descriptor: daily observations of stable isotope ratios of rainfall in the tropics. Sci. Rep. 9, 14419 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aggarwal, P. K. et al. Proportions of convective and stratiform precipitation revealed in water isotope ratios. Nat. Geosci. 9, 624–629 (2016).

    Article 
    CAS 

    Google Scholar 

  • Zwart, C. et al. The isotopic signature of monsoon conditions, cloud modes, and rainfall type. Hydrol. Processes 32, 2296–2303 (2018).

    Article 
    ADS 

    Google Scholar 

  • Jackson, B., Nicholson, S. E. & Klotter, D. Mesoscale convective systems over Western Equatorial Africa and their relationship to large-scale circulation. Mon. Weather Rev. 137, 1272–1294 (2009).

    Article 
    ADS 

    Google Scholar 

  • Sorí, R., Nieto, R., Vicente-Serrano, S. M., Drumond, A. & Gimeno, L. A Lagrangian perspective of the hydrological cycle in the Congo River basin. Earth Syst. Dynam. 8, 653–675 (2017).

    Article 
    ADS 

    Google Scholar 

  • International Atomic Energy Agency–World Meteorological Organization Global Network of Isotopes in Precipitation: The GNIP Database (accessed May 2020); https://nucleus.iaea.org/wiser/index.aspx.

  • Sachse, D., Dawson, T. E. & Kahmen, A. Seasonal variation of leaf wax n-alkane production and δ2H values from the evergreen oak tree, Quercus agrifolia. Isotopes Environ. Health Stud. 51, 124–142 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, X., Zhao, B., Wang, K., Hu, Y. & Meyers, P. A. Seasonal variations of leaf wax n-alkane molecular composition and δD values in two subtropical deciduous tree species: results from a three-year monitoring program in central China. Org. Geochem. 118, 15–26 (2018).

    Article 
    CAS 

    Google Scholar 

  • Botev, Z. I., Grotowski, J. F. & Kroese, D. P. Kernel density estimation via diffusion. Ann. Stat. 38, 2916–2957 (2010).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Albrecht, R., Sebag, D. & Verrecchia, E. Organic matter decomposition: bridging the gap between Rock-Eval pyrolysis and chemical characterization (CPMAS 13C NMR). Biogeochemistry 122, 101–111 (2015).

    Article 
    CAS 

    Google Scholar 

  • Matteodo, M. et al. Decoupling of topsoil and subsoil controls on organic matter dynamics in the Swiss Alps. Geoderma 330, 41–51 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Malou, O. P. et al. The Rock-Eval® signature of soil organic carbon in arenosols of the Senegalese groundnut basin. How do agricultural practices matter? Agr. Ecosyst. Environ. 301, 107030 (2020).

    Article 
    CAS 

    Google Scholar 

  • Thoumazeau, A. et al. A new in-field indicator to assess the impact of land management on soil carbon dynamics. Geoderma 375, 114496 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cranwell, P. A. Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment. Org. Geochem. 3, 79–89 (1981).

    Article 
    CAS 

    Google Scholar 

  • Ofiti, N. O. E. et al. Warming promotes loss of subsoil carbon through accelerated degradation of plant-derived organic matter. Soil Biol. Biochem. 156, 108185 (2021).

    Article 
    CAS 

    Google Scholar 

  • Stuiver, M. & Reimer, P. J. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215–230 (1993).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Machine learning facilitates “turbulence tracking” in fusion reactors

    Methane research takes on new urgency at MIT