in

High resolution ancient sedimentary DNA shows that alpine plant diversity is associated with human land use and climate change

[adace-ad id="91168"]
  • Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Schwörer, C. et al. Holocene climate, fire and vegetation dynamics at the treeline in the Northwestern Swiss Alps. Veg. Hist. Archaeobot. 23, 479–496 (2014).

    Article 

    Google Scholar 

  • Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Grabherr, G., Gottfried, M. & Pauli, H. Climate effects on mountain plants. Nature 369, 448 (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bennett, K. D. & Willis, K. J. Pollen. Tracking Environmental Change Using Lake Sediments (eds Smol, J. P., Birks, H. J. B., Last, W. M., Bradley, R. S. & Alverson, K.) 5–32 (Kluwer Academic Publishers, 2002).

  • Liu, S. et al. Sedimentary ancient DNA reveals a threat of warming-induced alpine habitat loss to Tibetan Plateau plant diversity. Nat. Commun. 12, 2995 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rijal, D. P. et al. Sedimentary ancient DNA shows terrestrial plant richness continuously increased over the Holocene in northern Fennoscandia. Sci. Adv. 7, eabf9557 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Giguet-Covex, C. et al. Long livestock farming history and human landscape shaping revealed by lake sediment DNA. Nat. Commun. 5, 3211 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Väre, H., Lampinen, R., Humphries, C. & Williams, P. Taxonomic diversity of vascular plants in the European alpine areas. in Alpine biodiversity in Europe (eds Nagy, L., Grabherr, G., Körner, C. & Thompson, D. B. A.) 133–148 (Springer Berlin Heidelberg, 2003).

  • Theurillat, J.-P. & Guisan, A. Potential impact of climate change on vegetation in the European alps: A Review. Climatic Change 50, 77–109 (2001).

  • Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tribsch, A. & Schönswetter, P. Patterns of endemism and comparative phylogeography confirm palaeo-environmental evidence for Pleistocene refugia in the Eastern Alps. Taxon 52, 477–497 (2003).

    Article 

    Google Scholar 

  • Rudmann-Maurer, K., Weyand, A., Fischer, M. & Stöcklin, J. The role of landuse and natural determinants for grassland vegetation composition in the Swiss Alps. Basic Appl. Ecol. 9, 494–503 (2008).

    Article 

    Google Scholar 

  • Walsh, K. et al. A historical ecology of the Ecrins (Southern French Alps): Archaeology and palaeoecology of the Mesolithic to the Medieval period. Quat. Int. 353, 52–73 (2014).

    Article 

    Google Scholar 

  • Walsh, K. & Giguet-Covex, C. Encyclopedia of the World’s Biomes 555–573 (Elsevier, 2020).

  • Schwörer, C., Henne, P. D. & Tinner, W. A model-data comparison of Holocene timberline changes in the Swiss Alps reveals past and future drivers of mountain forest dynamics. Glob. Chang. Biol. 20, 1512–1526 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Henne, P. D. et al. An empirical perspective for understanding climate change impacts in Switzerland. Reg. Environ. Change 18, 1–17 (2017).

    Google Scholar 

  • Niedrist, G., Tasser, E., Lüth, C., Dalla Via, J. & Tappeiner, U. Plant diversity declines with recent land use changes in European Alps. Plant Ecol. 202, 195–210 (2009).

    Article 

    Google Scholar 

  • Lasanta-Martínez, T., Vicente-Serrano, S. M. & Cuadrat-Prats, J. M. Mountain Mediterranean landscape evolution caused by the abandonment of traditional primary activities: A study of the Spanish Central Pyrenees. Appl. Geogr. 25, 47–65 (2005).

    Article 

    Google Scholar 

  • Nautiyal, S. & Kaechele, H. Adverse impacts of pasture abandonment in Himalayan protected areas: Testing the efficiency of a Natural Resource Management Plan (NRMP). Environ. Impact Assess. Rev. 27, 109–125 (2007).

    Article 

    Google Scholar 

  • Karger, D. N., Nobis, M. P. & Normand, S. CHELSA-TraCE21k v1. 0. Downscaled transient temperature and precipitation data since the last glacial maximum. Climate of the Past (2021).

  • Landolt, E. et al. Flora indicativa: Okologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen (Haupt, 2010).

  • Heiri, O., Brooks, S. J., Birks, H. J. B. & Lotter, A. F. A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quat. Sci. Rev. 30, 3445–3456 (2011).

    Article 
    ADS 

    Google Scholar 

  • Heiri, O., Ilyashuk, B., Millet, L., Samartin, S. & Lotter, A. F. Stacking of discontinuous regional palaeoclimate records: Chironomid-based summer temperatures from the Alpine region. Holocene 25, 137–149 (2015).

    Article 
    ADS 

    Google Scholar 

  • Ivy-Ochs, S. et al. Latest Pleistocene and Holocene glacier variations in the European Alps. Quat. Sci. Rev. 28, 2137–2149 (2009).

    Article 
    ADS 

    Google Scholar 

  • Finsinger, W. & Tinner, W. Pollen and plant macrofossils at Lac de Fully (2135 m a.s.l.): Holocene forest dynamics on a highland plateau in the Valais, Switzerland. Holocene 17, 1119–1127 (2007).

    Article 
    ADS 

    Google Scholar 

  • Baroni, C. et al. Last Lateglacial glacier advance in the Gran Paradiso Group reveals relatively drier climatic conditions established in the Western Alps since at least the Younger Dryas. Quat. Sci. Rev. 255, 106815 (2021).

    Article 

    Google Scholar 

  • Schibler, J., Elsner, J. & Schlumbaum, A. Incorporation of aurochs into a cattle herd in Neolithic Europe: Single event or breeding? Sci. Rep. 4, 5798 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schimmelpfennig, I. et al. A chronology of Holocene and Little Ice Age glacier culminations of the Steingletscher, Central Alps, Switzerland, based on high-sensitivity beryllium-10 moraine dating. Earth Planet. Sci. Lett. 393, 220–230 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ilyashuk, E. A., Heiri, O., Ilyashuk, B. P., Koinig, K. A. & Psenner, R. The Little Ice Age signature in a 700-year high-resolution chironomid record of summer temperatures in the Central Eastern Alps. Clim. Dyn. 52, 1–15 (2018).

    Google Scholar 

  • Willerslev, E. et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506, 47–51 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Alsos, I. G. et al. Ancient sedimentary DNA shows rapid post-glacial colonisation of Iceland followed by relatively stable vegetation until the Norse settlement (Landnám) AD 870. Quat. Sci. Rev. 259, 106903 (2021).

    Article 

    Google Scholar 

  • Pansu, J. et al. Reconstructing long-term human impacts on plant communities: an ecological approach based on lake sediment DNA. Mol. Ecol. 24, 1485–1498 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Varotto, C. et al. A pilot study of eDNA metabarcoding to estimate plant biodiversity by an alpine glacier core (Adamello glacier, North Italy). Sci. Rep. 11, 1208 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parducci, L. et al. Proxy comparison in ancient peat sediments: Pollen, macrofossil and plant DNA. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20130382 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clarke, C. L. et al. A 24,000-year ancient DNA and pollen record from the Polar Urals reveals temporal dynamics of arctic and boreal plant communities. Quat. Sci. Rev. 247, 106564 (2020).

    Article 

    Google Scholar 

  • Niemeyer, B., Epp, L. S., Stoof-Leichsenring, K. R., Pestryakova, L. A. & Herzschuh, U. A comparison of sedimentary DNA and pollen from lake sediments in recording vegetation composition at the Siberian treeline. Mol. Ecol. Resour. 17, e46–e62 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wilson, J. B., Peet, R. K., Dengler, J. & Pärtel, M. Plant species richness: the world records. J. Veg. Sci. 23, 796–802 (2012).

    Article 

    Google Scholar 

  • Wick, L., van Leeuwen, J. F. N., van der Knaap, W. O. & Lotter, A. F. Holocene vegetation development in the catchment of Sägistalsee (1935 m asl), a small lake in the Swiss Alps. J. Paleolimnol. 30, 261–272 (2003).

    Article 
    ADS 

    Google Scholar 

  • Lotter, A. F. et al. Holocene timber-line dynamics at Bachalpsee, a lake at 2265 m a.s.l. in the northern Swiss Alps. Veg. Hist. Archaeobot. 15, 295–307 (2006).

    Article 

    Google Scholar 

  • Thöle, L. et al. Reconstruction of Holocene vegetation dynamics at Lac de Bretaye, a high-mountain lake in the Swiss Alps. Holocene 26, 380–396 (2016).

    Article 
    ADS 

    Google Scholar 

  • Heiri, O., Lotter, A. F., Hausmann, S. & Kienast, F. A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps. Holocene 13, 477–484 (2003).

    Article 
    ADS 

    Google Scholar 

  • Garcés-Pastor, S., Cañellas-Boltà, N., Clavaguera, A., Calero, M. A. & Vegas-Vilarrúbia, T. Vegetation shifts, human impact and peat bog development in Bassa Nera pond (Central Pyrenees) during the last millennium. Holocene 27, 553–565 (2017).

    Article 
    ADS 

    Google Scholar 

  • Aeschimann, D., Lauber, K., Moser, D. M. & Theurillat, J. P. Flora Alpina: Atlas des 4500 Plantes Vasculaires des Alpes (Belin, 2004).

  • Sønstebø, J. H. et al. Using next-generation sequencing for molecular reconstruction of past Arctic vegetation and climate. Mol. Ecol. Resour. 10, 1009–1018 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Diekmann, M. Species indicator values as an important tool in applied plant ecology—a review. Basic Appl. Ecol. 4, 493–506 (2003).

    Article 

    Google Scholar 

  • Giesecke, T. et al. Postglacial change of the floristic diversity gradient in Europe. Nat. Commun. 10, 5422 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Colombaroli, D. & Tinner, W. Determining the long-term changes in biodiversity and provisioning services along a transect from Central Europe to the Mediterranean. Holocene 23, 1625–1634 (2013).

    Article 
    ADS 

    Google Scholar 

  • Schwörer, C., Colombaroli, D., Kaltenrieder, P., Rey, F. & Tinner, W. Early human impact (5000–3000 BC) affects mountain forest dynamics in the Alps. J. Ecol. 103, 281–295 (2015).

    Article 

    Google Scholar 

  • Furtwängler, A. et al. Ancient genomes reveal social and genetic structure of Late Neolithic Switzerland. Nat. Commun. 11, 1915 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gilck, F. & Poschlod, P. The origin of alpine farming: A review of archaeological, linguistic and archaeobotanical studies in the Alps. Holocene 29, 1503–1511 (2019).

    Article 
    ADS 

    Google Scholar 

  • Tinner, W., Nielsen, E. H. & Lotter, A. F. Mesolithic agriculture in Switzerland? A critical review of the evidence. Quat. Sci. Rev. 26, 1416–1431 (2007).

    Article 
    ADS 

    Google Scholar 

  • Berthel, N., Schwörer, C. & Tinner, W. Impact of Holocene climate changes on alpine and treeline vegetation at Sanetsch Pass, Bernese Alps, Switzerland. Rev. Palaeobot. Palynol. 174, 91–100 (2012).

    Article 

    Google Scholar 

  • Hafner, A. & Schwörer, C. Vertical mobility around the high-alpine Schnidejoch Pass. Indications of Neolithic and Bronze Age pastoralism in the Swiss Alps from paleoecological and archaeological sources. Quat. Int. https://doi.org/10.1016/j.quaint.2016.12.049 (2017).

  • Oveisi, M. et al. Potential for endozoochorous seed dispersal by sheep and goats: Risk of weed seed transport via animal faeces. Weed Res. 61, 1–12 (2021).

    Article 

    Google Scholar 

  • Bardgett, R. D. & Wardle, D. A. Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84, 2258–2268 (2003).

    Article 

    Google Scholar 

  • Scherrer, D. & Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406–416 (2011).

    Article 

    Google Scholar 

  • Giguet-Covex, C. et al. New insights on lake sediment DNA from the catchment: Importance of taphonomic and analytical issues on the record quality. Sci. Rep. 9, 14676 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andres, B. Alpine settlement remains in the Bernese Alps (Switzerland) in medieval and modern times. Historical Archaeologies of Transhumance across Europe (eds Costello, E. & Svensson, E.) 155–169 (Routledge, 2018).

  • eTopoi. Journal for Ancient Studies. 3, 279–283 (2012).

  • Grime, J. P. Competitive exclusion in herbaceous vegetation. Nature 242, 344–347 (1973).

    Article 
    ADS 

    Google Scholar 

  • Yuan, Z. Y., Jiao, F., Li, Y. H. & Kallenbach, R. L. Anthropogenic disturbances are key to maintaining the biodiversity of grasslands. Sci. Rep. 6, 22132 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spiegelberger, T., Matthies, D., Müller-Schärer, H. & Schaffner, U. Scale-dependent effects of land use on plant species richness of mountain grassland in the European Alps. Ecography 29, 541–548 (2006).

    Article 

    Google Scholar 

  • Maurer, K., Weyand, A., Fischer, M. & Stöcklin, J. Old cultural traditions, in addition to land use and topography, are shaping plant diversity of grasslands in the Alps. Biol. Conserv. 130, 438–446 (2006).

    Article 

    Google Scholar 

  • Kampmann, D. et al. Mountain grassland biodiversity: Impact of site conditions versus management type. J. Nat. Conserv. 16, 12–25 (2008).

    Article 

    Google Scholar 

  • Pellegrini, E., Buccheri, M., Martini, F. & Boscutti, F. Agricultural land use curbs exotic invasion but sustains native plant diversity at intermediate levels. Sci. Rep. 11, 8385 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bakker, E. S., Ritchie, M. E., Olff, H., Milchunas, D. G. & Knops, J. M. H. Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol. Lett. 9, 780–788 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Speed, J. D. M., Austrheim, G., Hester, A. J. & Mysterud, A. Elevational advance of alpine plant communities is buffered by herbivory. J. Veg. Sci. 23, 617–625 (2012).

    Article 

    Google Scholar 

  • Filazzola, A. et al. The effects of livestock grazing on biodiversity are multi-trophic: A meta-analysis. Ecol. Lett. 23, 1298–1309 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Evans, D. M. et al. The cascading impacts of livestock grazing in upland ecosystems: A 10-year experiment. Ecosphere 6, art42 (2015).

    Article 

    Google Scholar 

  • Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mathieu, J. Eine Agrargeschichte der inneren Alpen. Graubünden, Tessin, Wallis 1500–1800 (Chronos, 1992).

  • Aerni, K, Egli, H. R & Fehn, K. Siedlungsprozesse an der Höhengrenze der Ökumene: am Beispiel der Alpen: Referate der 16 Tagung des” Arbeitskreises für genetische Siedlungsforschung in Mitteleuropa” vom 20.−23. (Siedlungsforschung: Spiez, 1991).

  • Brugger, S. O. et al. Alpine glacier reveals ecosystem impacts of Europe’s prosperity and peril over the last millennium. Geophys. Res. Lett. 48, e2021GL095039 (2021).

  • Merkt, J. & Streif, H. Stechrohr-Bohrgeräte für limnische und marine Lockersedimente. Geologisches Jahrbuch 88, 137–148 (1970).

  • Lamb, A. L. Determination of organic and carbonate content in soils and sediments by loss on ignition (LOI), NERC Isotope Geosciences Laboratory Report, 197 (2004).

  • Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon https://doi.org/10.1017/RDC.2020.41 (2020).

  • Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Brooks, S. J., Langdon, P. G. & Heiri, O. The identification and use of Palaearctic Chironomidae larvae in palaeoecology. Quat. Res. Assoc. i-vi, 1-276 (2007).

  • Schulze, E. A Key to the Larval Chironomidae and their Instars from Austrian Danube Region Streams and Rivers with Particular Reference to a Numerical Taxonomic Approach. Part I. In: Wasser und Abwasser, Supplementband 3/93. Hrsg.: Bundesamt für Wassergüte, Wien-Kaisermühlen. Schriftenleitung: Werner Kohl. Selbstverlag, 1993, 514 S., öS 562. Acta Hydrochim. Hydrobiol. 22, 191–191 (1994).

    Article 

    Google Scholar 

  • Juggins, S. C2: Software for ecological and palaeoecological data analysis and visualisation (user guide version 1.5). Newcastle upon Tyne: Newcastle University (2007). https://www.staff.ncl.ac.uk/stephen.juggins/software/code/C2.pdf.

  • Moore, P. D., Webb, J. A. & Collison, M. E. Pollen Analysis, edn 2 (Blackwell, 1991).

  • Stockmarr & Ja Tabletes with spores used in absolute pollen analysis. Pollen Spores 13, 615–621 (1971).

    Google Scholar 

  • Reille, M. Pollen et spores d’Europe et d’Afrique du Nord (Laboratoire de Botanique historique et Palynologie, Marseille, 1992).

  • van Geel, B. et al. Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. J. Archaeol. Sci. 30, 873–883 (2003).

    Article 

    Google Scholar 

  • Bennett, K. D. Determination of the number of zones in a biostratigraphical sequence. N. Phytol. 132, 155–170 (1996).

    Article 
    CAS 

    Google Scholar 

  • Tinner, W. et al. Pollen and charcoal in lake sediments compared with historically documented forest fires in southern Switzerland since AD 1920. Holocene 8, 31–42 (1998).

    Article 
    ADS 

    Google Scholar 

  • Adolf, C. et al. The sedimentary and remote-sensing reflection of biomass burning in Europe. Glob. Ecol. Biogeogr. 27, 199–212 (2018).

    Article 

    Google Scholar 

  • Tinner, W. & Hu, F. S. Size parameters, size-class distribution and area-number relationship of microscopic charcoal: Relevance for fire reconstruction. Holocene 13, 499–505 (2003).

    Article 
    ADS 

    Google Scholar 

  • Parducci, L. et al. Ancient plant DNA in lake sediments. N. Phytol. 214, 924–942 (2017).

    Article 
    CAS 

    Google Scholar 

  • Alsos, I. G. et al. The treasure vault can be opened: Large-scale genome skimming works well using herbarium and silica gel dried material. Plants 9, 432 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • Taberlet, P. et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35, e14 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Voldstad, L. H. et al. A complete Holocene lake sediment ancient DNA record reveals long-standing high Arctic plant diversity hotspot in northern Svalbard. Quat. Sci. Rev. 234, 106207 (2020).

    Article 

    Google Scholar 

  • Boyer, F. et al. obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ficetola, G. F. et al. An in silico approach for the evaluation of DNA barcodes. BMC Genomics 11, 434 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Soininen, E. M. et al. Highly overlapping winter diet in two sympatric lemming species revealed by DNA metabarcoding. PLoS One 10, e0115335 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boratyn, G. M. et al. BLAST: A more efficient report with usability improvements. Nucleic Acids Res. 41, W29–W33 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leonard, J. A. et al. Animal DNA in PCR reagents plagues ancient DNA research. J. Archaeol. Sci. 34, 1361–1366 (2007).

    Article 

    Google Scholar 

  • Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Ter Braak, C. J. F. & Prentice, I. C. A theory of gradient analysis. Adv. Ecol. Res. 18, 271–317 (Elsevier, 1988).

  • Vieira, D. C., Brustolin, M. C., Ferreira, F. C. & Fonseca, G. segRDA: Anr package for performing piecewise redundancy analysis. Methods Ecol. Evol. 10, 2189–2194 (2019).

    Article 

    Google Scholar 

  • Simpson, G. L. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. 6, 149 (2018).

  • Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2017).

  • Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling inr for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article 

    Google Scholar 

  • Chen, W. & Ficetola, G. F. Numerical methods for sedimentary‐ancient‐DNA‐based study on past biodiversity and ecosystem functioning. Environ. DNA 2, 115–129 (2020).

    Article 

    Google Scholar 

  • Juggins, S. Rioja: Analysis of Quaternary Science Data. R package version 0.9-26. https://cran.r-project.org/web/packages/rioja/index.html (2020).

  • Oksanen, J. et al. vegan: Community Ecology Package. Software http://CRAN.R-project.org/package=vegan (2012).

  • Wickham, H. ggplot2-Elegant Graphics for Data Analysis (Springer, 2016).

  • Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2019).

  • Tinner, W. & Ammann, B. Long-term responses of mountain ecosystems to environmental changes: Resilience, adjustment, and vulnerability. In Global change and mountain regions. 133–143 (Springer, Dordrecht; 2005).


  • Source: Ecology - nature.com

    Ocean microbes get their diet through a surprising mix of sources, study finds

    New materials could enable longer-lasting implantable batteries