Each of the 23 key variables can be used for analysis. To validate the dataset, we used five plant-related variables (diversity of order, family, genus, species and species endemic to China) to demonstrate the process of using the dataset for analysis as follows:
(1) For the four variables of plant taxa “order”, “family”, “genus” and “species”, the similarity and difference in spatial distribution pattern of diversity of different taxa in the Qinling-Daba Mountains climate transition zone were analyzed. The spatial distribution pattern of the diversity of the four taxa is shown in Fig. 3, which is increasingly lower from south (low latitude) to north (high latitude). This result is consistent with the classical latitudinal gradient model of plant diversity. The boundary between higher diversity in the south and lower diversity in the north is roughly located in the area of Funiu Mountains in the eastern Qinling-Daba Mountains, Taibai Mountains in the central Qinling-Daba Mountains and Baishui River in the western Qinling-Daba Mountains. However, with the reduction in taxon scale, the spatial distribution pattern of diversity tends to be complex. Orders (Fig. 3a) and families (Fig. 3b) can be divided by lines, while genera (Fig. 3c) need thicker lines, and species (Fig. 3d) can only be divided by polygons. Figure 3 shows that the taxonomic groups of families are more clearly divided, while species can only be divided by staggered bands. Therefore, when dividing the north–south boundary, the family taxon scale is appropriate, whereas the species scale is more appropriate when studying the north–south transition zone.
The dataset can also count the orders, families and genera that appear in 58 nature reserves, indicating that these orders, families and genera are widely distributed in this area, while the orders, families and genera that only appear in a single nature reserve indicate that these taxa are unique to this nature reserve in this area, reflecting their locality and uniqueness, which is helpful to understanding the specific distribution of plants in detail. The relevant statistics are as follows:
There are 28 orders present in every nature reserve:
Liliales, Dipsacales, Lamiales, Fabales, Ericales, Poales, Saxifragales, Malpighiales, Malvales, Asterales, Fagales, Gentianales, Geraniales, Ranunculales, Rosales, Solanales, Apiales, Cornales, Brassicales, Caryophyllales, Dioscoreales, Santalales, Myrtales, Asparagales, Celastrales, Sapindales, Alismatales, and Boraginales.
The order that only appears in one nature reserve is Petrosaviales, which appears in the Dabashan Nature Reserve in Chongqing.
There are 51 families present in every nature reserve:
Liliaceae, Primulaceae, Plantaginaceae, Lamiaceae, Euphorbiaceae, Cannabaceae, Juncaceae, Fabaceae, Poaceae, Elaeagnaceae, Betulaceae, Apocynaceae, Violaceae, Malvaceae, Crassulaceae, Campanulaceae, Asteraceae, Orchidaceae, Polygonaceae, Orobanchaceae, Onagraceae, Gentianaceae, Geraniaceae, Ranunculaceae, Rubiaceae, Rosaceae, Caprifoliaceae, Thymelaeaceae, Apiaceae, Cyperaceae, Cornaceae, Paeoniaceae, Brassicaceae, Amaryllidaceae, Caryophyllaceae, Rhamnaceae, Santalaceae, Asparagaceae, Celastraceae, Sapindaceae, Adoxaceae, Araliaceae, Berberidaceae, Hydrangeaceae, Scrophulariaceae, Convolvulaceae, Urticaceae, Salicaceae, Papaveraceae, Iridaceae, and Boraginaceae.
There are 15 families that only appear in one nature reserve, as shown in Table 2.
There are 54 genera present in every nature reserve:
Patrinia, Polygonum, Sanicula, Plantago, Allium, Delphinium, Euphorbia, Juncus, Cynanchum, Trigonotis, Artemisia, Sorbus, Polygonatum, Scutellaria, Cirsium, Viburnum, Ajuga, Viola, Galium, Geranium, Salix, Epilobium, Gentiana, Ranunculus, Malus, Acer, Rubia, Rosa, Torilis, Lonicera, Adenophora, Philadelphus, Cornus, Paeonia, Rhamnus, Rumex, Carex, Thalictrum, Asparagus, Carpesium, Clematis, Potentilla, Euonymus, Eleutherococcus, Berberis, Spiraea, Rubus, Populus, Vicia, Silene, Iris, Poa, Aster, and Buddleja.
There were 225 genera that only appeared in one nature reserve, as shown in Figshare file 269.
(2) For the “species endemic to China” variable of plants, we can see from the diversity distribution pattern of species endemic to China in this region (Fig. 4) that the number of endemic species in the Qinling-Daba Mountains is higher than that of species outside of the region, which reflects the strong transition zone in the Qinling-Daba Mountains. The variables of species endemic to China obtained from the Qinling-Daba Mountains and their surroundings were clustered by the Bray–Curtis dissimilarity measure70 and Ward’s minimum variance (the clustering method recommended for plant cluster analysis). The clustering results are shown in Fig. 5a. At the same time, the clustering results are displayed in space. Figure 5b shows that category 3 extends from the east outside the Qinling-Daba Mountains to the Baishuijiang Nature Reserve inside the western Qinling-Daba Mountains, which is consistent with the fact that the Qinling-Daba Mountains are an important ecogeographical “corridor” connecting the east and the west.
Source: Ecology - nature.com