Hirai, H. et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar. Pollut. Bull. 62(8), 1683–1692. https://doi.org/10.1016/j.marpolbul.2011.06.004 (2011).
Google Scholar
Masó, M., Garcés, E., Pagès, F. & Camp, J. Drifting plastic debris as a potential vector for dispersing harmful algal bloom (HAB) species. Sci. Mar. 67(1), 107–111. https://doi.org/10.3989/scimar.2003.67n1107 (2003).
Google Scholar
Pandey, D., Singh, A., Ramanathan, A. & Kumar, M. The combined exposure of microplastics and toxic contaminants in the floodplains of North India: A review. J. Environ. Manag. 279, 111557. https://doi.org/10.1016/j.jenvman.2020.111557 (2021).
Google Scholar
Peng, L. et al. Micro- and nano-plastics in marine environment: Source, distribution and threats—A review. Sci. Total Environ. 698, 134254. https://doi.org/10.1016/j.scitotenv.2019.134254 (2020).
Google Scholar
Rillig, M. C. & Lehmann, A. Microplastic in terrestrial ecosystems and the soil?. Environ. Sci. Technol. 46(12), 6453–6454. https://doi.org/10.1021/es302011r (2012).
Google Scholar
Rochman, C. M. & Hoellein, T. The global odyssey of plastic pollution. Science 368(6496), 1184–1185. https://doi.org/10.1126/science.abc4428 (2020).
Google Scholar
Jan Kole, P., Löhr, A. J., van Belleghem, F. G. A. J. & Ragas, A. M. J. Wear and tear of tyres: A stealthy source of microplastics in the environment. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph14101265 (2017).
Google Scholar
Sommer, F. et al. Tire abrasion as a major source of microplastics in the environment. Aerosol Air Qual. Res. 18(8), 2014–2028. https://doi.org/10.4209/aaqr.2018.03.0099 (2018).
Google Scholar
Beita-Sandí, W., Selbes, M., Ersan, M. S. & Karanfil, T. Release of nitrosamines and nitrosamine precursors from scrap tires. Environ. Sci. Technol. Lett. 6(4), 251–256. https://doi.org/10.1021/acs.estlett.9b00172 (2019).
Google Scholar
Kaminsky, W. & Mennerich, C. Pyrolysis of synthetic tire rubber in a fluidised-bed reactor to yield 1,3-butadiene, styrene and carbon black. J. Anal. Appl. Pyrolysis 58–59, 803–811. https://doi.org/10.1016/S0165-2370(00)00129-7 (2001).
Google Scholar
Sundt, P., Schulze, P. E. & Syversen, F. Sources of microplastic- pollution to the marine environment. Mepex Nor. Environ. Agency 86, 20 (2014).
White, W. C. Butadiene production process overview. Chem. Biol. Interact. 166(1–3), 10–14. https://doi.org/10.1016/j.cbi.2007.01.009 (2007).
Google Scholar
Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji, N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 52(4), 1704–1724. https://doi.org/10.1021/acs.est.7b05559 (2018).
Google Scholar
Cooper, D. A. & Corcoran, P. L. Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii. Mar. Pollut. Bull. 60(5), 650–654. https://doi.org/10.1016/j.marpolbul.2009.12.026 (2010).
Google Scholar
O’Brine, T. & Thompson, R. C. Degradation of plastic carrier bags in the marine environment. Mar. Pollut. Bull. 60(12), 2279–2283. https://doi.org/10.1016/j.marpolbul.2010.08.005 (2010).
Google Scholar
Song, Y. K. et al. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environ. Sci Technol. 51(8), 4368–4376. https://doi.org/10.1021/acs.est.6b06155 (2017).
Google Scholar
Adobe Inc. (2019). Adobe illustrator. Retrieved from https://www.adobe.com/Products/Illustrator.
Chamas, A. et al. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8(9), 3494–3511. https://doi.org/10.1021/acssuschemeng.9b06635 (2020).
Google Scholar
Councell, T. B., Duckenfield, K. U., Landa, E. R. & Callender, E. Tire-wear particles as a source of zinc to the environment. Environ. Sci. Technol. 38(15), 4206–4214. https://doi.org/10.1021/es034631f (2004).
Google Scholar
Awet, T. T. et al. Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil. Environ. Sci. Eur. https://doi.org/10.1186/s12302-018-0140-6 (2018).
Google Scholar
Chung, H., Son, Y., Yoon, T. K., Kim, S. & Kim, W. The effect of multi-walled carbon nanotubes on soil microbial activity. Ecotoxicol. Environ. Saf. 74(4), 569–575. https://doi.org/10.1016/j.ecoenv.2011.01.004 (2011).
Google Scholar
Huber, M., Welker, A. & Helmreich, B. Critical review of heavy metal pollution of traffic area runoff: Occurrence, influencing factors, and partitioning. Sci. Total Environ. 541, 895–919. https://doi.org/10.1016/j.scitotenv.2015.09.033 (2016).
Google Scholar
Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M. & Nizami, A. S. Catalytic pyrolysis of plastic waste: A review. Process Saf. Environ. Prot. 102, 822–838. https://doi.org/10.1016/j.psep.2016.06.022 (2016).
Google Scholar
Zhang, X., Li, H., Cao, Q., Jin, L. & Wang, F. Upgrading pyrolytic residue from waste tires to commercial carbon black. Waste Manag. Res. 36(5), 436–444. https://doi.org/10.1177/0734242X18764292 (2018).
Google Scholar
Zhu, D., Li, G., Wang, H. T. & Duan, G. L. Effects of nano- or microplastic exposure combined with arsenic on soil bacterial, fungal, and protistan communities. Chemosphere 281, 130998. https://doi.org/10.1016/j.chemosphere.2021.130998 (2021).
Google Scholar
Pathan, S. I. et al. Soil Pollution from micro-and nanoplastic debris: A hidden and unknown biohazard. Sustainability 12(18), 1–31. https://doi.org/10.3390/su12187255 (2020).
Google Scholar
Rillig, M. C. & Bonkowski, M. Microplastic and soil protists: A call for research. Environ. Pollut. 241, 1128–1131. https://doi.org/10.1016/j.envpol.2018.04.147 (2018).
Google Scholar
Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. Life in the “Plastisphere”: Microbial communities on plastic marine debris. Environ. Sci. Technol. 47(13), 7137–7146. https://doi.org/10.1021/es401288x (2013).
Google Scholar
Burns, E. E. & Boxall, A. B. A. Microplastics in the aquatic environment: Evidence for or against adverse impacts and major knowledge gaps. Environ. Toxicol. Chem. 37(11), 2776–2796. https://doi.org/10.1002/etc.4268 (2018).
Google Scholar
Bradney, L. et al. Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environ. Int. 2019(131), 104937. https://doi.org/10.1016/j.envint.2019.104937 (2018).
Google Scholar
Duis, K. & Coors, A. Microplastics in the Aquatic and Terrestrial Environment: Sources (with a Specific Focus on Personal Care Products), fate and effects. Environ. Sci. Eur. 28(1), 1–25. https://doi.org/10.1186/s12302-015-0069-y (2016).
Google Scholar
Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3(7), 25–29. https://doi.org/10.1126/sciadv.1700782 (2017).
Google Scholar
Jayasiri, H. B., Purushothaman, C. S. & Vennila, A. Quantitative analysis of plastic debris on recreational beaches in Mumbai, India. Mar. Pollut. Bull. 77(1–2), 107–112. https://doi.org/10.1016/j.marpolbul.2013.10.024 (2013).
Google Scholar
Lassen, C., Hansen, S. F., Magnusson, K., Hartmann, N. B., Rehne Jensen, P., Nielsen, T. G. & Brinch, A. Microplastics occurrence, effects and sources of releases (2015).
Weithmann, N. et al. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. https://doi.org/10.1126/sciadv.aap8060 (2018).
Google Scholar
Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 46(6), 3060–3075. https://doi.org/10.1021/es2031505 (2012).
Google Scholar
Boenigk, J., Matz, C., Jürgens, K. & Arndt, H. Confusing selective feeding with differential digestion in bacterivorous nanoflagellates. J. Eukaryot. Microbiol. 48(4), 425–432. https://doi.org/10.1111/j.1550-7408.2001.tb00175.x (2001).
Google Scholar
Boenigk, J., Matz, C., Jürgens, K. & Arndt, H. Food concentration-dependent regulation of food selectivity of interception-feeding bacterivorous nanoflagellates. Aquat. Microb. Ecol. 27(2), 195–202. https://doi.org/10.3354/ame027195 (2002).
Google Scholar
Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492. https://doi.org/10.1016/j.envpol.2013.02.031 (2013).
Google Scholar
Moore, C. J. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environ. Res. 108(2), 131–139. https://doi.org/10.1016/j.envres.2008.07.025 (2008).
Google Scholar
Fu, S. F. et al. Exposure to polystyrene nanoplastic leads to inhibition of anaerobic digestion system. Sci. Total Environ. 625, 64–70. https://doi.org/10.1016/j.scitotenv.2017.12.158 (2018).
Google Scholar
Bock, C. et al. Factors shaping community patterns of protists and bacteria on a European scale. Environ. Microbiol. 22(6), 2243–2260. https://doi.org/10.1111/1462-2920.14992 (2020).
Google Scholar
Besseling, E., Wang, B., Lürling, M. & Koelmans, A. A. Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ. Sci. Technol. 48(20), 12336–12343. https://doi.org/10.1021/es503001d (2014).
Google Scholar
Brown, D. M., Wilson, M. R., MacNee, W., Stone, V. & Donaldson, K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Pharmacol. 175(3), 191–199. https://doi.org/10.1006/taap.2001.9240 (2001).
Google Scholar
Jeong, C. B. et al. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-P38 activation in the monogonont rotifer (Brachionus Koreanus). Environ. Sci. Technol. 50(16), 8849–8857. https://doi.org/10.1021/acs.est.6b01441 (2016).
Google Scholar
Kang, H. C., Jeong, H. J., Jang, S. H. & Lee, K. H. Feeding by common heterotrophic protists on the phototrophic dinoflagellate Biecheleriopsis adriatica (Suessiaceae) compared to that of other suessioid dinoflagellates. Algae 34(2), 127–140. https://doi.org/10.4490/algae.2019.34.5.29 (2019).
Google Scholar
Sjollema, S. B., Redondo-Hasselerharm, P., Leslie, H. A., Kraak, M. H. S. & Vethaak, A. D. Do plastic particles affect microalgal photosynthesis and growth?. Aquat. Toxicol. 170, 259–261. https://doi.org/10.1016/j.aquatox.2015.12.002 (2016).
Google Scholar
Rossi, G., Barnoud, J. & Monticelli, L. Polystyrene nanoparticles perturb lipid membranes. J. Phys. Chem. Lett. 5(1), 241–246. https://doi.org/10.1021/jz402234c (2014).
Google Scholar
Brandts, I. et al. Effects of nanoplastics on mytilus galloprovincialis after individual and combined exposure with carbamazepine. Sci. Total Environ. 643, 775–784. https://doi.org/10.1016/j.scitotenv.2018.06.257 (2018).
Google Scholar
Ciacci, C. et al. Nanoparticle-biological interactions in a marine benthic foraminifer. Sci. Rep. https://doi.org/10.1038/s41598-019-56037-2 (2019).
Google Scholar
Kim, J. A. et al. Low dose of amino-modified nanoparticles induces cell cycle arrest. ACS Nano 7(9), 7483–7494 (2013).
Google Scholar
Mao, Y. et al. Phytoplankton response to polystyrene microplastics: Perspective from an entire growth period. Chemosphere https://doi.org/10.1016/j.chemosphere.2018.05.170 (2018).
Google Scholar
Wang, F. et al. Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles. Nanoscale 5(22), 10868–10876. https://doi.org/10.1039/c3nr03249c (2013).
Google Scholar
Xia, T. et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 6(8), 1794–1807. https://doi.org/10.1021/nl061025k (2006).
Google Scholar
Lagarde, F. et al. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ. Pollut. 215, 331–339. https://doi.org/10.1016/j.envpol.2016.05.006 (2016).
Google Scholar
Bhattacharya, P., Lin, S., Turner, J. P. & Ke, P. C. Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. J. Phys. Chem. C 114(39), 16556–16561. https://doi.org/10.1021/jp1054759 (2010).
Google Scholar
Johansen, J. L., Rønn, R. & Ekelund, F. Toxicity of cadmium and zinc to small soil protists. Environ. Pollut. 242, 1510–1517. https://doi.org/10.1016/j.envpol.2018.08.034 (2018).
Google Scholar
Díaz, S., Martín-González, A. & Carlos Gutiérrez, J. Evaluation of heavy metal acute toxicity and bioaccumulation in soil ciliated protozoa. Environ. Int. 32(6), 711–717. https://doi.org/10.1016/j.envint.2006.03.004 (2006).
Google Scholar
Subba, P. et al. Zinc stress induces physiological, ultra-structural and biochemical changes in mandarin orange (Citrus Reticulata Blanco) seedlings. Physiol. Mol. Biol. Plants 20(4), 461–473. https://doi.org/10.1007/s12298-014-0254-2 (2014).
Google Scholar
Corcoll, N. et al. The effect of metals on photosynthesis processes and diatom metrics of biofilm from a metal-contaminated river: A translocation experiment. Ecol. Indic. 18, 620–631. https://doi.org/10.1016/j.ecolind.2012.01.026 (2012).
Google Scholar
Moffett, B. F. et al. Zinc contamination decreases the bacterial diversity of agricultural soil. FEMS Microbiol. Ecol. 43(1), 13–19. https://doi.org/10.1016/S0168-6496(02)00448-8 (2003).
Google Scholar
Kuperman, R. G. & Carreiro, M. M. Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biol. Biochem. 29(2), 179–190. https://doi.org/10.1016/S0038-0717(96)00297-0 (1997).
Google Scholar
Masmoudi, S. et al. Cadmium, copper, sodium and zinc effects on diatoms: From heaven to hell-a review. Cryptogam Algol 34(2), 185–225. https://doi.org/10.7872/crya.v34.iss2.2013.185 (2013).
Google Scholar
Gadd, G. M. & de Rome, L. Biosorption of copper by fungal melanin. Appl. Microbiol. Biotechnol. 29(6), 610–617. https://doi.org/10.1007/BF00260993 (1988).
Google Scholar
Khan, M. & Scullion, J. Effects of metal (Cd, Cu, Ni, Pb or Zn) enrichment of sewage-sludge on soil micro-organisms and their activities. Appl. Soil. Ecol. 20(2), 145–155. https://doi.org/10.1016/S0929-1393(02)00018-5 (2002).
Google Scholar
Guillard, R. R. L. & Lorenzen, C. J. Yellow-green algae with chlorophyllide C12. J. Phycol. 8(1), 10–14. https://doi.org/10.1111/j.1529-8817.1972.tb03995.x (1972).
Google Scholar
Zagata, P., Kopańska, M., Greczek-Stachura, M. & Burnecki, T. Acute toxicity of metals: Nickel and zinc to Paramecium bursaria and its endosymbionts. J. Microbiol. Biotechnol. Food Sci. 04, 128–131. https://doi.org/10.15414/jmbfs.2015.4.special2.128-131 (2015).
Google Scholar
Lenz, R., Enders, K. & Nielsen, T. G. Microplastic exposure studies should be environmentally realistic. Proc. Natl. Acad. Sci. U. S. A. 113(29), E4121–E4122. https://doi.org/10.1073/pnas.1606615113 (2016).
Google Scholar
Schertzinger, G., Ruchter, N. & Sures, B. Metal accumulation in sediments and amphipods downstream of combined sewer overflows. Sci. Total Environ. 616–617, 1199–1207. https://doi.org/10.1016/j.scitotenv.2017.10.199 (2018).
Google Scholar
Erasmus, J. H. et al. Metal accumulation in riverine macroinvertebrates from a platinum mining region. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.134738 (2020).
Google Scholar
Pradhan, S., Hedberg, J., Blomberg, E., Wold, S. & Odnevall Wallinder, I. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J. Nanopart. Res. 18(9), 1–14. https://doi.org/10.1007/s11051-016-3597-5 (2016).
Google Scholar
Taurozzi, J. S., Hackley, V. A. & Wiesner, M. R. Preparation of nanoparticle dispersions from powdered material using ultrasonic disruption. NIST Spec. Publ. 1200–2, 1–15 (2012).
Graupner, N. et al. Effects of short-term flooding on aquatic and terrestrial microeukaryotic communities: A mesocosm approach. Aquat. Microb. Ecol. 80(3), 257–272. https://doi.org/10.3354/ame01853 (2017).
Google Scholar
Strasser, R., Srivastava, A. & Tsimilli-Michael, M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In Probing Photosynthesis Mechanisms, Regulation and Adaption (eds Yanus, M. et al.) (Taylor and Francis, 2020).
Thwe, A. & Kasemsap, P. Quantification of OJIP fluorescence transient in tomato plants under acute ozone stress (2015).
Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4(7), 1–9. https://doi.org/10.1371/journal.pone.0006372 (2009).
Google Scholar
Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like RRNA-coding regions. Gene 71(2), 491–499. https://doi.org/10.1016/0378-1119(88)90066-2 (1988).
Google Scholar
Andrews, S. FastQC: A quality control tool for high throughput sequence data (2015).
Lange, A. et al. AmpliconDuo: A split-sample filtering protocol for high-throughput amplicon sequencing of microbial communities. PLoS ONE 10(11), 1–22. https://doi.org/10.1371/journal.pone.0141590 (2015).
Google Scholar
Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27(6), 863–864. https://doi.org/10.1093/bioinformatics/btr026 (2011).
Google Scholar
Masella, P. A., Bartram, A. K., Truszkowski, J. M., Brow, D. G. & Neufeld, J. D. PANDAseq: Paired-end assembler for illumina sequences. BMC Bioinform. https://doi.org/10.1186/1471-2105-13-31 (2012).
Google Scholar
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16), 2194–2200. https://doi.org/10.1093/bioinformatics/btr381 (2011).
Google Scholar
Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm: Robust and fast clustering method for amplicon-based studies. PeerJ 2014(1), 1–13. https://doi.org/10.7717/peerj.593 (2014).
Google Scholar
Callahan, B. J. et al. DADA2: High-resolution sample inference from illumina amplicon data. Nat. Methods 13(7), 581–583. https://doi.org/10.1038/nmeth.3869 (2016).
Google Scholar
Welzel, M. et al. Natrix: A snakemake-based workflow for processing, clustering, and taxonomically assigning amplicon sequencing reads. BMC Bioinform. 21(1), 1–14. https://doi.org/10.1186/s12859-020-03852-4 (2020).
Google Scholar
Oksanen, J. Package “vegan” Title Community Ecology Package (2022).
R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/.
Chen, W., Simpson, J. & Leveque, C. RAM: R for amplicon-sequencing-based microbial-ecology (2018).
Yarza, P. et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S RRNA gene sequences. Nat. Rev. Microbiol. 12(9), 635–645. https://doi.org/10.1038/nrmicro3330 (2014).
Google Scholar
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12), 1–21. https://doi.org/10.1186/s13059-014-0550-8 (2014).
Google Scholar
Palarea-Albaladejo, J. & Martín-Fernández, J. A. ZCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst. 143, 85–96. https://doi.org/10.1016/j.chemolab.2015.02.019 (2015).
Google Scholar
Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 1–6. https://doi.org/10.3389/fmicb.2017.02224 (2017).
Google Scholar
Dusaucy, J., Gateuille, D., Perrette, Y. & Naffrechoux, E. Microplastic pollution of worldwide lakes. Environ. Pollut. 284, 117075. https://doi.org/10.1016/j.envpol.2021.117075 (2021).
Google Scholar
Vardhan, K. H., Kumar, P. S. & Panda, R. C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 290, 111197. https://doi.org/10.1016/j.molliq.2019.111197 (2019).
Google Scholar
Damare, V. S. Diversity of thraustochytrid protists isolated from brown alga, Sargassum cinereum using 18S RDNA sequencing and their morphological response to heavy metals. J. Mar. Biol. Assoc. 95(2), 265–276. https://doi.org/10.1017/S0025315414001696 (2015).
Google Scholar
Giongo, A. et al. Adaption of Microbial communities to the hostile environment in the Doce river after the collapse of two iron ore tailing dams. Heliyon https://doi.org/10.1016/j.heliyon.2020.e04778 (2020).
Google Scholar
Kelly, J. J., Häggblom, M. M. & Tate, R. L. Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profiles. Biol. Fertil. Soils 38(2), 65–71. https://doi.org/10.1007/s00374-003-0642-1 (2003).
Google Scholar
Baddar, Z. E., Peck, E. & Xu, X. Temporal deposition of copper and zinc in the sediments of metal removal constructed wetlands. PLoS ONE 16, 1–14. https://doi.org/10.1371/journal.pone.0255527 (2021).
Google Scholar
Li, X., Shen, Z., Wai, O. W. H. & Li, Y. S. Chemical partitioning of heavy metal contaminants in sediments of the Pearl River Estuary. Chem. Speciat. Bioavailab. 12(1), 17–25. https://doi.org/10.3184/095422900782775607 (2000).
Google Scholar
Müller, B. & Sigg, L. Interaction of trace metals with natural particle surfaces: Comparison between adsorption experiments and field measurements—Dedicated to Werner Stumm for his 65th birthday. Aquat. Sci. 52(1), 75–92. https://doi.org/10.1007/BF00878242 (1990).
Google Scholar
Bradl, H. B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 277(1), 1–18. https://doi.org/10.1016/j.jcis.2004.04.005 (2004).
Google Scholar
Siegel, F. R. Environmental Geochemistry of Potentially Toxic Heavy Metals (Springer-Verlag, 2002).
Google Scholar
Vig, K., Megharaj, M., Sethunathan, N. & Naidu, R. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: A review. Adv. Environ. Res. 8(1), 121–135. https://doi.org/10.1016/S1093-0191(02)00135-1 (2003).
Google Scholar
Nicolau, A., Mota, M. & Lima, N. Physiological responses of tetrahymena pyriformis to copper, zinc, cycloheximide and triton X-100. FEMS Microbiol. Ecol. 30(3), 209–216. https://doi.org/10.1016/S0168-6496(99)00057-4 (1999).
Google Scholar
Admiraal, W. et al. Short-term toxicity of zinc to microbenthic algae and bacteria in a metal polluted stream. Water Res. 33(9), 1989–1996. https://doi.org/10.1016/S0043-1354(98)00426-6 (1999).
Google Scholar
Bradac, P., Navarro, E., Odzak, N., Behra, R. & Sigg, L. Kinetics of cadmium accumulation in periphyton under freshwater conditions. Environ. Toxicol. Chem. 28(10), 2108–2116. https://doi.org/10.1897/08-511R1.1 (2009).
Google Scholar
Collard, J. & Matagne, R. F. Cd2+ resistance in wild-type and mutant strains of Chlamydomonas reinhardtii. Environ. Exp. Bot. 34(2), 235–244 (1994).
Google Scholar
Wright, R. J., Gibson, M. I. & Christie-Oleza, J. A. Understanding microbial community dynamics to improve optimal microbiome selection. Microbiome 7(1), 1–14. https://doi.org/10.1186/s40168-019-0702-x (2019).
Google Scholar
Buffle, J. The key role of environmental colloids/nanoparticles for the sustainability of life. Environ. Chem. 3(3), 155–158. https://doi.org/10.1071/ENv3n3_ES (2006).
Google Scholar
Nowack, B. & Bucheli, T. D. Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 150(1), 5–22. https://doi.org/10.1016/j.envpol.2007.06.006 (2007).
Google Scholar
Fetzer, I. et al. The extent of functional redundancy changes as species’ roles shift in different environments. Proc. Natl. Acad. Sci. U. S. A. 112(48), 14888–14893. https://doi.org/10.1073/pnas.1505587112 (2015).
Google Scholar
Biggs, C. R. et al. Does functional redundancy affect ecological stability and resilience? A review and meta-analysis. Ecosphere https://doi.org/10.1002/ecs2.3184 (2020).
Google Scholar
Fleeger, J. W. How do indirect effects of contaminants inform ecotoxicology? A review. Processes https://doi.org/10.3390/pr8121659 (2020).
Google Scholar
Oriekhova, O. & Stoll, S. Heteroaggregation of nanoplastic particles in the presence of inorganic colloids and natural organic matter. Environ. Sci. Nano. 5(3), 792–799. https://doi.org/10.1039/c7en01119a (2018).
Google Scholar
Rowenczyk, L. et al. Heteroaggregates of polystyrene nanospheres and organic matter: Preparation, characterization and evaluation of their toxicity to algae in environmentally relevant conditions. Nanomaterials 11(2), 1–15. https://doi.org/10.3390/nano11020482 (2021).
Google Scholar
Saavedra, J., Stoll, S. & Slaveykova, V. I. Influence of nanoplastic surface charge on eco-corona formation, aggregation and toxicity to freshwater zooplankton. Environ. Pollut. 252, 715–722. https://doi.org/10.1016/j.envpol.2019.05.135 (2019).
Google Scholar
Bižic-Ionescu, M., Ionescu, D. & Grossart, H. P. Organic particles: Heterogeneous hubs for microbial interactions in aquatic ecosystems. Front. Microbiol. 9, 1–15. https://doi.org/10.3389/fmicb.2018.02569 (2018).
Google Scholar
Lespes, G., Faucher, S. & Slaveykova, V. I. natural nanoparticles, anthropogenic nanoparticles, where is the Frontier?. Front. Environ. Sci. 8, 1–5. https://doi.org/10.3389/fenvs.2020.00071 (2020).
Google Scholar
Stabnikova, O. et al. Microbial life on the surface of microplastics in natural waters. Appl. Sci. 11(24), 1–19. https://doi.org/10.3390/app112411692 (2021).
Google Scholar
Suominen, S., Doorenspleet, K., Sinninghe Damsté, J. S. & Villanueva, L. Microbial community development on model particles in the deep sulfidic waters of the Black Sea. Environ. Microbiol. 23(6), 2729–2746. https://doi.org/10.1111/1462-2920.15024 (2021).
Google Scholar
Wagner, S., Gondikas, A., Neubauer, E., Hofmann, T. & von der Kammer, F. Spot the difference: Engineered and natural nanoparticles in the environment-release, behavior, and fate. Angew. Chem. Int. Ed. 53(46), 12398–12419. https://doi.org/10.1002/anie.201405050 (2014).
Google Scholar
Amelia, T. S. et al. Marine microplastics as vectors of major ocean pollutants and its hazards to the marine ecosystem and humans. Prog. Earth Planet. Sci. https://doi.org/10.1186/s40645-020-00405-4 (2021).
Google Scholar
Liu, J., Huang, J. & Che, F. Microalgae as feedstocks for biodiesel production. In Biodiesel—Feedstocks and Processing Technologies (ed. Stoytcheva, M.) (InTech, 2011). https://doi.org/10.5772/25600.
Google Scholar
Takamura, N., Kasai, F. & Watanabe, M. M. Effects of Cu, Cd and Zn on photosynthesis of freshwater benthic algae. J. Appl. Phycol. 1(1), 39–52. https://doi.org/10.1007/BF00003534 (1989).
Google Scholar
Brembu, T., Jørstad, M., Winge, P., Valle, K. C. & Bones, A. M. Genome-wide profiling of responses to cadmium in the diatom Phaeodactylum tricornutum. Environ. Sci. Technol. 45(18), 7640–7647. https://doi.org/10.1021/es2002259 (2011).
Google Scholar
Fernandez, J. C. & Henriques, F. S. Biochemical, physiological and structural effects of excess copper in plants. Bot. Rev. 57(3), 246–273 (1991).
Google Scholar
Haq, R. U., Rehman, A. & Shakoori, A. R. Effect of dichromate on population and growth of various protozoa isolated from industrial effluents. Folia Microbiol. 45(3), 275–278. https://doi.org/10.1007/bf02908959 (2000).
Google Scholar
Rehman, A., Shakoori, F. R. & Shakoori, A. R. Heavy metal resistant freshwater ciliate, Euplotes mutabilis, isolated from industrial effluents has potential to decontaminate wastewater of toxic metals. Bioresour. Technol. 99(9), 3890–3895. https://doi.org/10.1016/j.biortech.2007.08.007 (2008).
Google Scholar
Rehman, A., Ashraf, S., Qazi, J. I. & Shakoori, A. R. Uptake of lead by a ciliate, stylonychia mytilus, isolated from industrial effluents: Potential use in bioremediation of wastewater. Bull. Environ. Contam. Toxicol. 75(2), 290–296. https://doi.org/10.1007/s00128-005-0751-7 (2005).
Google Scholar
Shakoori, A. R., Rehman, A. & ul-Haq, R. Multiple metal resistance in the ciliate protozoan, vorticella microstoma, isolated from industrial effluents and its potential in bioremediation of toxic wastes. Bull. Environ. Contam. Toxicol. 72(5), 1046–1051. https://doi.org/10.1007/s00128-004-0349-5 (2004).
Google Scholar
Falasco, E. et al. Morphological abnormalities of diatom silica walls in relation to heavy metal contamination and artificial growth conditions. Water SA 35(5), 595–606. https://doi.org/10.4314/wsa.v35i5.49185 (2009).
Google Scholar
Tadros, M. G., Mbuthia, P. & Smith, W. Differential response of marine diatoms to trace metals. Bull. Environ. Contam. Toxicol. 44(6), 826–831. https://doi.org/10.1007/BF01702170 (1990).
Google Scholar
Wanner, M. et al. Soil testate amoebae and diatoms as bioindicators of an old heavy metal contaminated floodplain in Japan. Microb. Ecol. 79(1), 123–133. https://doi.org/10.1007/s00248-019-01383-x (2020).
Google Scholar
Shi, J., Podola, B. & Melkonian, M. Application of a prototype-scale twin-layer photobioreactor for effective N and P removal from different process stages of municipal wastewater by immobilized microalgae. Bioresour. Technol. 154, 260–266. https://doi.org/10.1016/j.biortech.2013.11.100 (2014).
Google Scholar
Li, T., Lin, G., Podola, B. & Melkonian, M. Continuous removal of zinc from wastewater and mine dump leachate by a microalgal biofilm PSBR. J. Hazard. Mater. 297, 112–118. https://doi.org/10.1016/j.jhazmat.2015.04.080 (2015).
Google Scholar
Bruning, K. Infection of the diatom Asterionella by a chytrid. I. Effects of light on reproduction and infectivity of the parasite. J. Plankton Res. 13(1), 103–117. https://doi.org/10.1093/plankt/13.1.103 (1991).
Google Scholar
Carney, L. T. & Lane, T. W. Parasites in algae mass culture. Front. Microbiol. 5, 1–8. https://doi.org/10.3389/fmicb.2014.00278 (2014).
Google Scholar
Hanic, L. A., Sekimoto, S. & Bates, S. S. Oomycete and chytrid infections of the marine diatom Pseudo-nitzschia pungens (Bacillariophyceae) from Prince Edward Island. Botany 87(11), 1096–1105. https://doi.org/10.1139/B09-070 (2009).
Google Scholar
Sun, A. et al. Fertilization alters protistan consumers and parasites in crop-associated microbiomes. Environ. Microbiol. 23(4), 2169–2183. https://doi.org/10.1111/1462-2920.15385 (2021).
Google Scholar
Scholz, B., Guillou, L., Marano, A. V., Neuhauser, S. & Brooke, K. Europe PMC funders group zoosporic parasites infecting marine diatoms—A black box that needs to be opened. Fungal Ecol. https://doi.org/10.1016/j.funeco.2015.09.002.Zoosporic (2017).
Google Scholar
Peacock, E. E., Olson, R. J. & Sosik, H. M. Parasitic infection of the diatom Guinardia delicatula, a recurrent and ecologically important phenomenon on the New England Shelf. Mar. Ecol. Prog. Ser. 503, 1–10. https://doi.org/10.3354/meps10784 (2014).
Google Scholar
Duarte, S., Pascoal, C. & Cássio, F. Effects of zinc on leaf decomposition by fungi in streams: Studies in microcosms. Microb. Ecol. 48(3), 366–374. https://doi.org/10.1007/s00248-003-2032-5 (2004).
Google Scholar
Kammerlander, B. et al. High diversity of protistan plankton communities in remote high mountain lakes in the European Alps and the Himalayan Mountains. FEMS Microbiol. Ecol. 91(4), 1–10. https://doi.org/10.1093/femsec/fiv010 (2015).
Google Scholar
Sieber, G., Beisser, D., Bock, C. & Boenigk, J. Protistan and fungal diversity in soils and freshwater lakes are substantially different. Sci. Rep. 10(1), 1–11. https://doi.org/10.1038/s41598-020-77045-7 (2020).
Google Scholar
Gunaalan, K., Fabbri, E. & Capolupo, M. The hidden threat of plastic leachates: A critical review on their impacts on aquatic organisms. Water Res. https://doi.org/10.1016/j.watres.2020.116170 (2020).
Google Scholar
Tetu, S. G., Sarker, I., Schrameyer, V., Pickford, R., Elbourne, L. D., Moore, L.R. & Paulsen, I.T. Plastic leachates impair growth and oxygen production in Prochlorococcus, the ocean’s most abundant photosynthetic bacteria. Commun. Biol. 2(1), 1–9. https://doi.org/10.1038/s42003-019-0410-x (2019).
Gouin, T., Roche, N., Lohmann, R. & Hodges, G. A Thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic. Environ. Sci. Technol. 45(4), 1466–1472. https://doi.org/10.1021/es1032025 (2011).
Google Scholar
Lohmann, R. Microplastics are not important for the cycling and bioaccumulation of organic pollutants in the oceans—But should microplastics be considered POPs themselves?. Integr. Environ. Assess. Manag. 13(3), 460–465. https://doi.org/10.1002/ieam.1914 (2017).
Google Scholar
Sukkasem, C. & Laehlah, S. An economical upflow bio-filter circuit (UBFC): A biocatalyst microbial fuel cell for sulfate-sulfide rich wastewater treatment. Environ. Sci. 1(2), 161–168. https://doi.org/10.1039/c4ew00028e (2015).
Google Scholar
Abatenh, E., Gizaw, B., Tsegaye, Z. & Wassie, M. The role of microorganisms in bioremediation-A review. Open J. Environ. Biol. 2(1), 38–46. https://doi.org/10.17352/ojeb (2017).
Google Scholar
Zrimec, J., Kokina, M., Jonasson, S., Zorrilla, F. & Zelezniak, A. Plastic-degrading potential across the global microbiome correlates with recent pollution trends. MBio https://doi.org/10.1128/mBio (2021).
Google Scholar
Siver, P. A. Synurophyte algae. In Freshwater Algae of North America. Ecology and classification (eds Wehr, J. D. & Sheath, R. G.) 523–558 (Elsevier, 2003).
Google Scholar
Andersen, R. A. Molecular systematics of the chrysophyceae and synurophyceae. In Unravelling the Algae: The Past, Present, and Future of Algal Systematics (eds Brodie, J. & Lewis, J.) 285–314 (CRC Press, Boca Raton, 2007).
Google Scholar
Engin, I. K., Cekmecelioglu, D., Yücel, A. M. & Oktem, H. A. Evaluation of heterotrophic and mixotrophic cultivation of novel Micractinium Sp. ME05 on vinasse and its scale up for biodiesel production. Bioresour. Technol. 251, 128–134. https://doi.org/10.1016/j.biortech.2017.12.023 (2018).
Google Scholar
Patrick, R. Ecology of freshwater diatoms and diatom communities. In The Biology of Diatoms (ed. Werner, D.) 284–332 (University of California Press, 1977).
Findenig, B. M., Chatzinotas, A. & Boenigk, J. Taxonomic and ecological characterization of stomatocysts of spumella-like flagellates (Chrysophyceae). J. Phycol. 46(5), 868–881. https://doi.org/10.1111/j.1529-8817.2010.00892.x (2010).
Google Scholar
Perez-Garcia, O., Escalante, F. M. E., de-Bashan, L. E. & Bashan, Y. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res. 45(1), 11–36. https://doi.org/10.1016/j.watres.2010.08.037 (2011).
Google Scholar
Preisig, H. R. & Hibberd, D. J. Ultrastructure and taxonomy of Paraphysomonas (Chrysophyceae) and related genera 3. Nord. J. Bot. 3(6), 695–723. https://doi.org/10.1111/j.1756-1051.1983.tb01481.x (1983).
Google Scholar
Atkins, M. S. et al. Tolerance of flagellated protists to high sulfide and metal concentrations potentially encountered at deep-sea hydrothermal vents. Mar. Ecol. Prog. Ser. 226, 63–75. https://doi.org/10.3354/meps226063 (2002).
Google Scholar
Manru, G., Weisong, F. & Yunfen, S. Ecological study on protozoa in the sediment of the three-gorges area of the Changjiang River. Chin. J. Oceanol. Limnol. 6(3), 272–280. https://doi.org/10.1007/BF02846505 (1988).
Google Scholar
Tomilina, I. I., Gremyachikh, V. A., Myl’Nikov, A. P. & Komov, V. T. The effect of metal oxide nanoparticles (CeO2, TiO2, and ZnO) on biological parameters of freshwater nanoflagellates and crustaceans. Dokl. Biol. Sci. 436(1), 53–55. https://doi.org/10.1134/S0012496611010169 (2011).
Google Scholar
Schampera, C. et al. Exposure to nanoplastics affects the outcome of infectious disease in phytoplankton. Environ. Pollut. https://doi.org/10.1016/j.envpol.2021.116781 (2021).
Google Scholar
Gonçalves, J. M., Sousa, V. S., Teixeira, M. R. & Bebianno, M. J. Chronic toxicity of polystyrene nanoparticles in the marine mussel Mytilus galloprovincialis. Chemosphere https://doi.org/10.1016/j.chemosphere.2021.132356 (2021).
Google Scholar
Kelpsiene, E., Torstensson, O., Ekvall, M. T., Hansson, L. A. & Cedervall, T. Long-term exposure to nanoplastics reduces life-time in Daphnia magna. Sci. Rep. 10(1), 1–7. https://doi.org/10.1038/s41598-020-63028-1 (2020).
Google Scholar
Amin, N. M. Techniques for assessment of heavy metal toxicity using Acanthamoeba Sp, a small, naked and free-living amoeba. Funct. Ecosyst. https://doi.org/10.5772/36008 (2012).
Google Scholar
Amin, N. M., Azhar, N. & Shazili, M. Cytotoxic effects of mercury, cadmium, lead and zinc on Acanthamoeba Castellanii (2006).
Gnecco, I., Berretta, C., Lanza, L. G. & la Barbera, P. Storm water pollution in the urban environment of Genoa, Italy. Atmos. Res. 77, 60–73. https://doi.org/10.1016/j.atmosres.2004.10.017 (2005).
Google Scholar
Heim, R. R. An overview of weather and climate extremes—Products and trends. Weather Clim. Extrem. 10, 1–9. https://doi.org/10.1016/j.wace.2015.11.001 (2015).
Google Scholar
Saiki, M. K., Castleberry, D. T., May, T. W., Martin, B. A. & Bullard, F. N. Copper, cadmium, and zinc concentrations in aquatic food chains from the upper Sacramento River (California) and selected tributaries. Arch. Environ. Contam. Toxicol. 29(4), 484–491. https://doi.org/10.1007/BF00208378 (1995).
Google Scholar
Wagner, S. et al. Tire wear particles in the aquatic environment—A review on generation, analysis, occurrence, fate and effects. Water Res. 139, 83–100. https://doi.org/10.1016/j.watres.2018.03.051 (2018).
Google Scholar
Zhang, L., Zhao, B., Xu, G. & Guan, Y. Characterizing fluvial heavy metal pollutions under different rainfall conditions: Implication for aquatic environment protection. Sci. Total Environ. 635, 1495–1506. https://doi.org/10.1016/j.scitotenv.2018.04.211 (2018).
Google Scholar
Zhao, B. et al. Characterization of nitrosamines and nitrosamine precursors as non-point source pollutants during heavy rainfall events in an urban water environment. J. Hazard. Mater. 424, 127552. https://doi.org/10.1016/j.jhazmat.2021.127552 (2022).
Google Scholar
Hüffer, T., Wagner, S., Reemtsma, T. & Hofmann, T. Sorption of organic substances to tire wear materials: Similarities and differences with other types of microplastic. TrAC Trends Anal. Chem. 113, 392–401. https://doi.org/10.1016/j.trac.2018.11.029 (2019).
Google Scholar
Tamis, J. E. et al. Environmental risks of car tire microplastic particles and other road runoff pollutants. Microplastics Nanoplastics 1(1), 1–17. https://doi.org/10.1186/s43591-021-00008-w (2021).
Google Scholar
Chèvre, N. et al. Substance flow analysis as a tool for urban water management. Water Sci. Technol. 63(7), 1341–1348. https://doi.org/10.2166/wst.2011.132 (2011).
Google Scholar
Šourková, M., Adamcová, D. & Vaverková, M. D. The influence of microplastics from ground tyres on the acute, subchronical toxicity and microbial respiration of soil. Environ. MDPI 8(11), 1–14. https://doi.org/10.3390/environments8110128 (2021).
Google Scholar
Ye, G., Zhang, X., Yan, C., Lin, Y. & Huang, Q. Polystyrene microplastics induce microbial dysbiosis and dysfunction in surrounding seawater. Environ. Int. 156, 106724. https://doi.org/10.1016/j.envint.2021.106724 (2021).
Google Scholar
Source: Ecology - nature.com