in

A colonial-nesting seabird shows no heart-rate response to drone-based population surveys

  • Ratcliffe, N. et al. A protocol for the aerial survey of penguin colonies using UAVs. J. Unmanned Veh. Syst. 3, 95–101 (2015).

    Google Scholar 

  • Albores-Barajas, Y. V. et al. A new use of technology to solve an old problem: Estimating the population size of a burrow nesting seabird. PLoS ONE 13, 1–15 (2018).

    Google Scholar 

  • Rush, G. P., Clarke, L. E., Stone, M. & Wood, M. J. Can drones count gulls? Minimal disturbance and semiautomated image processing with an unmanned aerial vehicle for colony-nesting seabirds. Ecol. Evol. 8, 12322–12334 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chabot, D., Craik, S. R. & Bird, D. M. Population census of a large Common tern colony with a small unmanned aircraft. PLoS ONE 10, 1–14 (2015).

    Google Scholar 

  • McClelland, G. T. W., Bond, A. L., Sardana, A. & Glass, T. Rapid population estimate of a surface-nesting seabird on a remote island using a low-cost unmanned aerial vehicle. Mar. Ornithol. 44, 215–220 (2016).

    Google Scholar 

  • Lynch, H. J., White, R., Black, A. D. & Naveen, R. Detection, differentiation, and abundance estimation of penguin species by high-resolution satellite imagery. Polar Biol. 35, 963–968 (2012).

    Google Scholar 

  • Fretwell, P. T. et al. An Emperor penguin population estimate: The first global, synoptic survey of a species from space. PLoS ONE 7, e33751 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xue, Y., Wang, T. & Skidmore, A. K. Automatic counting of large mammals from very high resolution panchromatic satellite imagery. Remote Sens. 9, 1–16 (2017).

    Google Scholar 

  • Laliberte, A. S. & Ripple, W. J. Automated wildlife counts from remotely sensed imagery. Wildl. Soc. Bull. 31, 362–371 (2003).

    Google Scholar 

  • Lyons, M. B. et al. Monitoring large and complex wildlife aggregations with drones. Methods Ecol. Evol. 10, 1024–1035 (2019).

    Google Scholar 

  • LaRue, M. A., Stapleton, S. & Anderson, M. Feasibility of using high-resolution satellite imagery to assess vertebrate wildlife populations. Conserv. Biol. 31, 213–220 (2017).

    PubMed 

    Google Scholar 

  • Sardà-Palomera, F., Bota, G., Padilla, N., Brotons, L. & Sardà, F. Unmanned aircraft systems to unravel spatial and temporal factors affecting dynamics of colony formation and nesting success in birds. J. Avian Biol. 48, 1273–1280 (2017).

    Google Scholar 

  • Schofield, G., Katselidis, K. A., Lilley, M. K. S., Reina, R. D. & Hays, G. C. Detecting elusive aspects of wildlife ecology using drones: New insights on the mating dynamics and operational sex ratios of sea turtles. Funct. Ecol. 31, 2310–2319 (2017).

    Google Scholar 

  • Lachman, D., Conway, C., Vierling, K. & Matthews, T. Drones provide a better method to find nests and estimate nest survival for colonial waterbirds: A demonstration with Western grebes. Wetl. Ecol. Manag. 28, 837–845 (2020).

    Google Scholar 

  • Torres, L. G., Nieukirk, S. L., Lemos, L. & Chandler, T. E. Drone up! Quantifying whale behavior from a new perspective improves observational capacity. Front. Mar. Sci. 5, 1–14 (2018).

    Google Scholar 

  • Jagielski, P. M., Dey, C. J., Gilchrist, H. G., Richardson, E. S. & Semeniuk, C. A. D. Polar bear foraging on common eider eggs: Estimating the energetic consequences of a climate-mediated behavioural shift. Anim. Behav. 171, 63–75 (2021).

    Google Scholar 

  • Jagielski, P. M. et al. Polar bears are inefficient predators of seabird eggs. R. Soc. Open Sci. 8, 210391 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Callaghan, C. T., Brandis, K. J., Lyons, M. B., Ryall, S. & Kingsford, R. T. A comment on the limitations of UAVS in wildlife research—The example of colonial nesting waterbirds. J. Avian Biol. 49, e01825 (2018).

    Google Scholar 

  • Brisson-Curadeau, É. et al. Seabird species vary in behavioural response to drone census. Sci. Rep. 7, 1–9 (2017).

    Google Scholar 

  • Nowak, M. M., Dziób, K. & Bogawski, P. Unmanned aerial vehicles (UAVs) in environmental biology: A review. Eur. J. Ecol. 4, 56–74 (2019).

    Google Scholar 

  • Watts, A. C. et al. Small unmanned aircraft systems for low-altitude aerial surveys. J. Wildl. Manag. 74, 1614–1619 (2010).

    Google Scholar 

  • Sasse, D. B. Job-related mortality of wildlife workers in the United States, 1937–2000. Wildl. Soc. Bull. 31, 1015–1020 (2003).

    Google Scholar 

  • Carey, M. J. The effects of investigator disturbance on procellariiform seabirds: A review. N. Z. J. Zool. 36, 367–377 (2009).

    Google Scholar 

  • Carney, K. M. & Sydeman, W. J. A review of human disturbance effects on nesting colonial waterbirds. Int. J. Waterbird Biol. 22, 68–79 (1999).

    Google Scholar 

  • Barber-Meyer, S. M., Kooyman, G. L. & Ponganis, P. J. Estimating the relative abundance of Emperor penguins at inaccessible colonies using satellite imagery. Polar Biol. 30, 1565–1570 (2007).

    Google Scholar 

  • Lyons, M. et al. A protocol for using drones to assist monitoring of large breeding bird colonies. EcolEvol https://doi.org/10.32942/osf.io/p9j3f (2019).

    Article 

    Google Scholar 

  • Hodgson, J. C. et al. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evol. 9, 1160–1167 (2018).

    Google Scholar 

  • Hodgson, J. C., Baylis, S. M., Mott, R., Herrod, A. & Clarke, R. H. Precision wildlife monitoring using unmanned aerial vehicles. Sci. Rep. 6, 1–7 (2016).

    Google Scholar 

  • Weston, M. A., O’Brien, C., Kostoglou, K. N. & Symonds, M. R. E. Escape responses of terrestrial and aquatic birds to drones: Towards a code of practice to minimize disturbance. J. Appl. Ecol. 57, 777–785 (2020).

    Google Scholar 

  • Korczak-Abshire, M. et al. Preliminary study on nesting Adélie penguins disturbance by unmanned aerial vehicles. CCAMLR Sci. 23, 1–16 (2016).

    Google Scholar 

  • Mesquita, G. P., Rodríguez-Teijeiro, J. D., Wich, S. A. & Mulero-Pázmány, M. Measuring disturbance at a swift breeding colonies due to the visual aspects of a drone: A quasi-experiment study. Curr. Zool. 41, 259–266 (2020).

    Google Scholar 

  • Weimerskirch, H., Prudor, A. & Schull, Q. Flights of drones over sub-Antarctic seabirds show species- and status-specific behavioural and physiological responses. Polar Biol. 41, 259–266 (2018).

    Google Scholar 

  • Mulero-Pázmány, M. et al. Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review. PLoS ONE 12, 1–14 (2017).

    Google Scholar 

  • Barnas, A. et al. Evaluating behavioral responses of nesting Lesser snow geese to unmanned aircraft surveys. Ecol. Evol. 8, 1328–1338 (2018).

    PubMed 

    Google Scholar 

  • Ellis-felege, S. N. et al. Nesting Common eiders (Somateria mollissima) show little behavioral response to fixed-wing drone surveys. J. Unmanned Veh. Syst. https://doi.org/10.1139/juvs-2021-0012 (2021).

    Article 

    Google Scholar 

  • Wilson, R. P., Culik, B., Danfeld, R. & Adelung, D. People in Antarctica—how much do Adélie penguins Pygoscelis adeliae care?. Polar Biol. 11, 363–370 (1991).

    Google Scholar 

  • Ricklefs, R. E. An analysis of nesting mortality in birds. Smithson. Contrib. Zool. 9, 1–48 (1969).

    Google Scholar 

  • Ditmer, M. A. et al. Bears show a physiological but limited behavioral response to unmanned aerial vehicles. Curr. Biol. 25, 2278–2283 (2015).

    PubMed 

    Google Scholar 

  • Ditmer, M. A. et al. Bears habituate to the repeated exposure of a novel stimulus, unmanned aircraft systems. Conserv. Physiol. 6, 1–7 (2018).

    Google Scholar 

  • Jaatinen, K., Seltmann, M. W. & Öst, M. Context-dependent stress responses and their connections to fitness in a landscape of fear. J. Zool. 294, 147–153 (2014).

    Google Scholar 

  • Seltmann, M. W. et al. Stress responsiveness, age and body condition interactively affect flight initiation distance in breeding female eiders. Anim. Behav. 84, 889–896 (2012).

    Google Scholar 

  • Cockrem, J. F. Stress, corticosterone responses and avian personalities. J. Ornithol. 148, S169–S178 (2007).

    Google Scholar 

  • Criscuolo, F. Does blood sampling during eider incubation induce nest desertion in the female Common eider Somateria mollissima?. Mar. Ornithol. 29, 47–50 (2001).

    Google Scholar 

  • Ellenberg, U., Mattern, T. & Seddon, P. J. Heart rate responses provide an objective evaluation of human disturbance stimuli in breeding birds. Conserv. Physiol. 1, 1–11 (2013).

    Google Scholar 

  • DeRose-Wilson, A., Fraser, J. D., Karpanty, S. M. & Hillman, M. D. Effects of overflights on incubating Wilson’s plover behavior and heart rate. J. Wildl. Manag. 79, 1246–1254 (2015).

    Google Scholar 

  • de Villiers, M., Bause, M., Giese, M. & Fourie, A. Hardly hard-hearted: Heart rate responses of incubating Northern giant petrels (Macronectes halli) to human disturbance on sub-Antarctic Marion Island. Polar Biol. 29, 717–720 (2006).

    Google Scholar 

  • Borneman, T. E., Rose, E. T. & Simons, T. R. Minimal changes in heart rate of incubating American oystercatchers (Haematopus palliatus) in response to human activity. Condor 116, 493–503 (2014).

    Google Scholar 

  • Felton, S. K., Pollock, K. H. & Simons, T. R. Response of beach-nesting American oystercatchers to off-road vehicles: An experimental approach reveals physiological nuances and decreased nest attendance. Condor 120, 47–62 (2018).

    Google Scholar 

  • Bolduc, F. & Guillemette, M. Human disturbance and nesting success of Common eiders: Interaction between visitors and gulls. Biol. Conserv. 110, 77–83 (2003).

    Google Scholar 

  • Hennin, H. L. et al. Plasma mammalian leptin analogue predicts reproductive phenology, but not reproductive output in a capital-income breeding seaduck. Ecol. Evol. 9, 1512–1521 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Culik, B., Adelung, D. & Woakes, A. J. The effect of disturbance on the heart rate and behaviour of Adélie penguins (Pygoscelis adeliae) during the breeding season. In Antarctic Ecosystems. Ecological Change and Conservation (eds Kerry, K. R. & Hempel, G.) 177–182 (Springer, 1990).

    Google Scholar 

  • Weimerskirch, H. et al. Heart rate and energy expenditure of incubating Wandering albatrosses: Basal levels, natural variation, and the effects of human disturbance. J. Exp. Biol. 205, 475–483 (2002).

    PubMed 

    Google Scholar 

  • Egan, C. C., Blackwell, B. F., Fernández-Juricic, E. & Klug, P. E. Testing a key assumption of using drones as frightening devices: Do birds perceive drones as risky?. Condor 122, 1–15 (2020).

    Google Scholar 

  • McEvoy, J. F., Hall, G. P. & McDonald, P. G. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: Disturbance effects and species recognition. PeerJ 4, e1831 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Goebel, M. E. et al. A small unmanned aerial system for estimating abundance and size of Antarctic predators. Polar Biol. 38, 619–630 (2015).

    Google Scholar 

  • Bevan, E. et al. Measuring behavioral responses of sea turtles, saltwater crocodiles, and Crested terns to drone disturbance to define ethical operating thresholds. PLoS ONE 13, 4–6 (2018).

    Google Scholar 

  • Rümmler, M. C., Mustafa, O., Maercker, J., Peter, H. U. & Esefeld, J. Measuring the influence of unmanned aerial vehicles on Adélie penguins. Polar Biol. 39, 1329–1334 (2016).

    Google Scholar 

  • Vas, E., Lescroël, A., Duriez, O., Boguszewski, G. & Grémillet, D. Approaching birds with drones: First experiments and ethical guidelines. Biol. Lett. 11, 20140754 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Frid, A. & Dill, L. Human-caused disturbance stimuli as a form of predation risk. Ecol. Soc. 6, 11 (2002).

    Google Scholar 

  • Forbes, M. R. L., Clark, R. G., Weatherhead, P. J. & Armstrong, T. Risk-taking by female ducks: Intra-and interspecific tests of nest defense theory. Behav. Ecol. Sociobiol. 34, 79–85 (1994).

    Google Scholar 

  • Viblanc, V. A., Smith, A. D., Gineste, B., Kauffmann, M. & Groscolas, R. Modulation of heart rate response to acute stressors throughout the breeding season in the King penguin Aptenodytes patagonicus. J. Exp. Biol. 218, 1686–1692 (2015).

    PubMed 

    Google Scholar 

  • Montgomerie, R. D. & Weatherhead, P. J. Risks and rewards of nest defence by parent birds. Q. Rev. Biol. 63, 167–187 (1988).

    Google Scholar 

  • Criscuolo, F., Gabrielsen, G. W., Gendner, J.-P. & Maho, Y. L. Body mass regulation during incubation in female Common eiders Somateria mollissima. J. Avian Biol. 33, 83–88 (2002).

    Google Scholar 

  • Cyr, N. E., Wikelski, M. & Romero, L. M. Increased energy expenditure but decreased stress responsiveness during molt. Physiol. Biochem. Zool. Ecol. Evol. Approaches 81, 452–462 (2008).

    Google Scholar 

  • Kralj-Fišer, S., Scheiber, I. B. R., Kotrschal, K., Weiß, B. M. & Wascher, C. A. F. Glucocorticoids enhance and suppress heart rate and behaviour in time dependent manner in Greylag geese (Anser anser). Physiol. Behav. 100, 394–400 (2010).

    PubMed 

    Google Scholar 

  • Hodgson, J. C. & Koh, L. P. Best practice for minimising unmanned aerial vehicle disturbance to wildlife in biological field research. Curr. Biol. 26, R404–R405 (2016).

    PubMed 

    Google Scholar 

  • Parker, H. & Holm, H. Patterns of nutrient and energy expenditure in female Common eiders nesting in the high Arctic. Auk 107, 660–668 (1990).

    Google Scholar 

  • Mehlum, F. Eider Studies in Svalbard Vol. 195 (Norsk Polarinstitutt Skrifter, 1991).

    Google Scholar 

  • Markowitz, E. M., Nisbet, M. C., Danylchuk, A. J. & Engelbourg, S. I. What’s that buzzing noise? Public opinion on the use of drones for conservation science. Bioscience 67, 382–385 (2017).

    Google Scholar 

  • Legagneux, P. et al. Unpredictable perturbation reduces breeding propensity regardless of pre-laying reproductive readiness in a partial capital breeder. J. Avian Biol. 47, 880–886 (2016).

    Google Scholar 

  • Love, O. P., Gilchrist, H. G., Descamps, S., Semeniuk, C. A. D. & Bêty, J. Pre-laying climatic cues can time reproduction to optimally match offspring hatching and ice conditions in an Arctic marine bird. Oecologia 164, 277–286 (2010).

    ADS 
    PubMed 

    Google Scholar 

  • Fast, P. L. F., Gilchrist, H. G. & Clark, R. G. Nest-site materials affect nest-bowl use by Common eiders (Somateria mollissima). Can. J. Zool. 88, 214–218 (2010).

    Google Scholar 

  • McKinnon, L., Gilchrist, H. G. & Scribner, K. T. Genetic evidence for kin-based female social structure in Common eiders (Somateria mollissima). Behav. Ecol. 17, 614–621 (2006).

    Google Scholar 

  • Descamps, S., Forbes, M. R., Gilchrist, H. G., Love, O. P. & Bêty, J. Avian cholera, post-hatching survival and selection on hatch characteristics in a long-lived bird, the Common eider Somateria mollissima. J. Avian Biol. 42, 39–48 (2011).

    Google Scholar 

  • Buttler, E. I. Avian Cholera Among Arctic Breeding Common eiders Somateria mollissima: Temporal Dynamics and the Role of Handling Stress in Reproduction and Survival (Carleton University, 2009).

    Google Scholar 

  • Descamps, S., Gilchrist, H. G., Bêty, J., Buttler, E. I. & Forbes, M. R. Costs of reproduction in a long-lived bird: large clutch size is associated with low survival in the presence of a highly virulent disease. Biol. Lett. 5, 278–281 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Iverson, S. A., Gilchrist, H. G., Smith, P. A., Gaston, A. J. & Forbes, M. R. Longer ice-free seasons increase the risk of nest depredation by Polar bears for colonial breeding birds in the Canadian Arctic. Proc. R. Soc. B Biol. Sci. 281, 20133128 (2014).

    Google Scholar 

  • Dey, C. J. et al. Increasing nest predation will be insufficient to maintain Polar bear body condition in the face of sea ice loss. Glob. Change Biol. 23, 1821–1831 (2017).

    ADS 

    Google Scholar 

  • Giese, M., Handsworth, R. & Stephenson, R. Measuring resting heart rates in penguins using an artificial egg. J. Field Ornithol. 70, 49–54 (1999).

    Google Scholar 

  • Weller, M. W. A simple field candler for waterfowl eggs. J. Wildl. Manag. 20, 111–113 (1956).

    Google Scholar 

  • Barnas, A. F. et al. A standardized protocol for reporting methods when using drones for wildlife research. J. Unmanned Veh. Syst. 8, 89–98 (2020).

    Google Scholar 

  • Audacity Team. Audacity(R): Free Audio Editor and Recorder [Computer Application]. Version 2.3.2 retrieved Oct 10th 2019 from https://www.audacityteam.org/ (2019).

  • Nimon, A. J., Schroter, R. C. & Oxenham, R. K. C. Artificial eggs: Measuring heart rate and effects of disturbance in nesting penguins. Physiol. Behav. 60, 1019–1022 (1996).

    PubMed 

    Google Scholar 

  • SAS Institute Inc. SAS® Studio 3.8: User’s Guide (SAS Institute Inc, 2018).

    Google Scholar 

  • Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).

    MATH 

    Google Scholar 

  • Akaike, H. Information theory and an extension of the maximum likelihood principle. In Breakthroughs in Statistics, Volume I, Foundations and Basic Theory (eds Kotz, S. & Johnson, N. L.) 610–624 (Springer, New York, 1998).

    Google Scholar 

  • Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. R package version 0.8.3. https://CRAN.R-project.org/package=dplyr (2015).

  • Grolemund, G. & Wickham, H. Dates and times made easy with lubridate. J. Stat. Softw. 40, 1–25 (2011).

    Google Scholar 

  • Hijmans, R. J., Williams, E. & Vennes, C. Geosphere: Spherical Trigonometry. https://CRAN.R-project.org/package=geosphere (2017).

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

    MATH 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Found. Stat. Comput., Vienna, 2017).

    Google Scholar 


  • Source: Ecology - nature.com

    New materials could enable longer-lasting implantable batteries

    A short exposure to a semi-natural habitat alleviates the honey bee hive microbial imbalance caused by agricultural stress