in

Factors influencing lion movements and habitat use in the western Serengeti ecosystem, Tanzania

  • Pacifici, M., Di Marco, M. & Watson, J. E. M. Protected areas are now the last strongholds for many imperiled mammal species. Conserv. Lett. 13, 1–7 (2020).

    Google Scholar 

  • Cardillo, M. et al. Human population density and extinction risk in the world’s carnivores. PLoS Biol. 2, 909–914 (2004).

    CAS 

    Google Scholar 

  • Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the anthropocene: the great acceleration. Anthr. Rev. 2, 81–98 (2015).

    Google Scholar 

  • Wolf, C. & Ripple, W. J. Range contractions of the world’s large carnivores. R. Soc. Open Sci. 4, 170052 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wolf, C. & Ripple, W. J. Prey depletion as a threat to the world’s large carnivores. R. Soc. Open Sci. 3, 160252 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).

    PubMed 

    Google Scholar 

  • Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).

    Google Scholar 

  • Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).

    ADS 
    PubMed 

    Google Scholar 

  • Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).

    ADS 
    PubMed 

    Google Scholar 

  • Rija, A. A., Critchlow, R., Thomas, C. D. & Beale, C. M. Global extent and drivers of mammal population declines in protected areas under illegal hunting pressure. PLoS One 15, 1–14 (2020).

    Google Scholar 

  • Bamford, A. J., Ferrol-Schulte, D. & Wathan, J. Human and wildlife usage of a protected area buffer zone in an area of high immigration. Oryx 48, 504–513 (2014).

    Google Scholar 

  • Snyder, K. D., Mneney, P. B. & Wittemyer, G. Predicting the risk of illegal activity and evaluating law enforcement interventions in the western Serengeti. Conserv. Sci. Pract. 1, 1–13 (2019).

    Google Scholar 

  • Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lynagh, F. M. & Urich, P. B. A critical review of buffer zone theory and practice: A Philippine case study. Soc. Nat. Resour. 15, 129–145 (2002).

    Google Scholar 

  • Paolino, R. M. et al. Buffer zone use by mammals in a Cerrado protected area. Biota Neotrop. 16, (2016).

  • Mills, K. L. et al. Comparable space use by lions between hunting concessions and national parks in West Africa. J. Appl. Ecol. 57, 975–984 (2020).

    ADS 

    Google Scholar 

  • Lindsey, P. A. et al. The performance of African protected areas for lions and their prey. Biol. Conserv. 209, 137–149 (2017).

    Google Scholar 

  • Tyrrell, P., Russell, S. & Western, D. Seasonal movements of wildlife and livestock in a heterogenous pastoral landscape: Implications for coexistence and community based conservation. Glob. Ecol. Conserv. 12, 59–72 (2017).

    Google Scholar 

  • Veldhuis, M. P. et al. Cross-boundary human impacts compromise the Serengeti-Mara ecosystem. Science 363, 1424–1428 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Everatt, K. T., Andresen, L. & Somers, M. J. The influence of prey, pastoralism and poaching on the hierarchical use of habitat by an apex predator. Afr. J. Wildl. Res. 45, 187–196 (2015).

    Google Scholar 

  • Oriol-Cotterill, A., Macdonald, D. W., Valeix, M., Ekwanga, S. & Frank, L. G. Spatiotemporal patterns of lion space use in a human-dominated landscape. Anim. Behav. 101, 27–39 (2015).

    Google Scholar 

  • Schuette, P., Creel, S. & Christianson, D. Coexistence of African lions, livestock, and people in a landscape with variable human land use and seasonal movements. Biol. Conserv. 157, 148–154 (2013).

    Google Scholar 

  • Beattie, K., Olson, E. R., Kissui, B., Kirschbaum, A. & Kiffner, C. Predicting livestock depredation risk by African lions (Panthera leo) in a multi-use area of northern Tanzania. Eur. J. Wildl. Res. 66, 1–4 (2020).

    Google Scholar 

  • Loveridge, A. J., Hemson, G., Davidson, Z. & Macdonald, D. W. African lions on the edge: Reserve boundaries as ‘attractive sinks’. In Biology and Conservation of Wild Felids (eds. Macdonald, D. W. & Loveridge, A. J.) 283–304 (Oxford University Press, 2010).

  • Boyers, M., Parrini, F., Owen-Smith, N., Erasmus, B. F. N. & Hetem, R. S. How free-ranging ungulates with differing water dependencies cope with seasonal variation in temperature and aridity. Conserv. Physiol. 7, 1–12 (2019).

    Google Scholar 

  • Abade, L. et al. The relative effects of prey availability, anthropogenic pressure and environmental variables on lion (Panthera leo) site use in Tanzania’s Ruaha landscape during the dry season. J. Zool. 310, 135–144 (2020).

    Google Scholar 

  • Hopcraft, J. G. C., Sinclair, A. R. E. & Packer, C. Planning for success: Serengeti lions seek prey accessibility rather than abundance. J. Anim. Ecol. 74, 559–566 (2005).

    Google Scholar 

  • Treves, A. & Karanth, K. U. Human-carnivore conflict and perspectives on carnivore management worldwide. Conserv. Biol. 17, 1491–1499 (2003).

    Google Scholar 

  • Kisingo, A. W. Governance of Protected Areas in the Serengeti Ecosystem, Tanzania (University of Victoria, 2013).

  • UNEP-WCMC & IUCN. Protected planet: the world database on protected areas (WDPA). www.protectedplanet.net (2020).

  • Zella, A. Y. The management of protected areas in Serengeti ecosystem: A case study of Ikorongo and Grumeti Game Reserves (IGGRs). Int. J. Eng. Sci. 6, 22–50 (2016).

    Google Scholar 

  • IUCN. Ngorongoro Conservation Area conservation outlook assessment. The IUCN World Heritage Outlook https://worldheritageoutlook.iucn.org/explore-sites/wdpaid/2010 (2020).

  • Kittle, A. M., Bukombe, J. K., Sinclair, A. R. E., Mduma, S. A. R. & Fryxell, J. M. Landscape-level movement patterns by lions in western Serengeti: Comparing the influence of inter-specific competitors, habitat attributes and prey availability. Mov. Ecol. 4, 1–18 (2016).

    Google Scholar 

  • Packer, C. et al. Ecological change, group territoriality, and population dynamics in Serengeti lions. Science 307, 390–393 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mwampeta, S. B. et al. Lion and spotted hyena distributions within a buffer area of the Serengeti-Mara ecosystem. Sci. Rep. 11, 1–8 (2021).

    Google Scholar 

  • Grumeti Fund. Protecting wildlife and human lives in the western corridor of the Serengeti. https://www.grumetifund.org/blog/updates/protecting-wildlife-and-human-lives-in-the-western-corridor-of-the-serengeti/ (2020).

  • IUCN. Serengeti National Park conservation outlook assessment. The IUCN World Heritage Outlook https://worldheritageoutlook.iucn.org/explore-sites/wdpaid/2575 (2017).

  • Veldhuis, M. P. et al. Data from: Cross-boundary human impacts compromise the Serengeti-Mara ecosystem. Dryad https://doi.org/10.5061/dryad.b303788 (2021).

  • Larsen, F. et al. Wildebeest migration drives tourism demand in the Serengeti. Biol. Conserv. 248, 108688 (2020).

    Google Scholar 

  • Norton-Griffiths, M., Herlocker, D. & Pennycuick, L. The patterns of rainfall in the Serengeti Ecosystem, Tanzania. Afr. J. Ecol. 13, 347–374 (1975).

    Google Scholar 

  • McNaughton, S. J. Serengeti grassland ecology: The role of composite environmental factors and contingency in community organization. Ecol. Monogr. 53, 291–320 (1983).

    Google Scholar 

  • Buchhorn, M. et al. Copernicus global land service: land cover 100m: version 3 globe 2015-2019. Copernicus Global Land Operations. Zenodo. https://doi.org/10.5281/zenodo.3938963.

  • Boone, R. B., Thirgood, S. J. & Hopcraft, J. G. C. Serengeti wildebeest migratory patterns modeled from rainfall and new vegetation growth. Ecology 87, 1987–1994 (2006).

    PubMed 

    Google Scholar 

  • Ogutu, J. O. & Dublin, H. T. The response of lions and spotted hyaenas to sound playbacks as a technique for estimating population size. Afr. J. Ecol. 36, 83–95 (1998).

    Google Scholar 

  • Fyumagwa, R. D. et al. Comparison of anaesthesia and cost of two immobilization protocols in free-ranging lions. S. Afr. J. Wildl. Res. 42, 67–70 (2012).

    Google Scholar 

  • Rija, A. A. Spatial Pattern of Illegal Activities and the Impact on Wildlife Populations in Protected Areas in the Serengeti Ecosystem. (University of York, 2017).

  • Kideghesho, J. R. Wildlife Conservation and Local Land Use Conflicts in Western Serengeti Corridor, Tanzania (Norwegian University of Science and Technology, 2006).

  • Holmern, T., Muya, J. & Røskaft, E. Local law enforcement and illegal bushmeat hunting outside the Serengeti National Park, Tanzania. Environ. Conserv. 34, 55–63 (2007).

    Google Scholar 

  • Schmitt, J. A. Improving Conservation Efforts in the Serengeti Ecosystem, Tanzania: An Examination of Knowledge, Benefits, Costs, and Attitudes (University of Minnesota, 2010).

  • Kaaya, E. & Chapman, M. Micro-credit and community wildlife management: Complementary strategies to improve conservation outcomes in Serengeti National Park, Tanzania. Environ. Manag. 60, 464–475 (2017).

    ADS 

    Google Scholar 

  • Kideghesho, J. R., Røskaft, E. & Kaltenborn, B. P. Factors influencing conservation attitudes of local people in Western Serengeti, Tanzania. Biodivers. Conserv. 16, 2213–2230 (2007).

    Google Scholar 

  • Kegamba, J. J., Sangha, K. K., Wurm, P. & Garnett, S. T. A review of conservation-related benefit-sharing mechanisms in Tanzania. Glob. Ecol. Conserv. 33, e01955 (2022).

    Google Scholar 

  • Rija, A. A. & Kideghesho, J. R. Poachers’ strategies to surmount anti-poaching efforts in Western Serengeti, Tanzania. In Protected Areas in Northern Tanzania (eds. Durrant, J. O. et al.) 91–112 (Springer Nature Switzerland AG, 2020).

  • Mfunda, I. M. & Røskaft, E. Wildlife or crop production: The dilemma of conservation and human livelihoods in Serengeti, Tanzania. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 7, 39–49 (2011).

    Google Scholar 

  • Kideghesho, J. R. Reversing the trend of wildlife crime in Tanzania: Challenges and opportunities. Biodivers. Conserv. 25, 427–449 (2016).

    Google Scholar 

  • Sisya, E., Frankfurt Zoological Society & Tanzania National Parks Authority. Serengeti Park Roads. Serengeti GIS and Data Centre and ArcGIS Online. ArcGIS online https://www.arcgis.com/home/item.html?id=f8d9e2cb6ab24b92bd6d645a0d659963. (2018).

  • Maliti, H., von Hagen, C., Frankfurt Zoological Society, Tanzania National Parks Authority & Hopcraft, J. G. C. Serengeti Park rivers. https://serengetidata.weebly.com/rivers-and-lakes.html (2008).

  • Worldpop & Center for International Earth Science Information Network. The spatial distribution of population density in 2018, Tanzania. https://doi.org/10.5258/SOTON/WP00674 (2018).

  • Gilbert, M. et al. Global cattle distribution in 2010 (5 minutes of arc). Harvard Dataverse, Version 3. https://doi.org/10.7910/DVN/GIVQ7 (2018).

  • Gilbert, M. et al. [dataset] Global goat distribution in 2010 (5 minutes of arc). Harvard Dataverse, Version 3. https://doi.org/10.7910/DVN/OCPH42 (2018).

  • Gilbert, M. et al. Global sheep distribution in 2010 (5 minutes of arc). Harvard Dataverse, Version 3. https://doi.org/10.7910/DVN/BLWPZN (2018).

  • Gilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data 5, 1–11 (2018).

    Google Scholar 

  • Swihart, R. K. & Slade, N. A. Testing for independence of observations in animal movements. Ecology 66, 1176–1184 (1985).

    Google Scholar 

  • Seaman, D. E. & Powell, R. A. An evaluation of the accuracy of kernel density estimators for home range analysis. Ecology 77, 2075–2085 (1996).

    Google Scholar 

  • Calenge, C. The package adehabitat for the R software: Tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Version 4.0.4. https://www.r-project.org/ (2021).

  • Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.) 36, 27–46 (2013).

    Google Scholar 

  • Thomas, D. L. & Taylor, E. J. Study designs and tests for comparing resource use and availability II. J. Wildl. Manag. 70, 324–336 (2006).

    Google Scholar 

  • Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Sommer, S. & Huggins, R. M. Variables selection using the Wald test and a robust CP. J. R. Stat. Soc. 45, 15–29 (1996).

    MATH 

    Google Scholar 

  • Burnham, K. P. & Anderson, D. D. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).

  • Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. (2020).

  • Ogutu, J. O. & Dublin, H. T. Demography of lions in relation to prey and habitat in the Maasai Mara National Reserve, Kenya. Afr. J. Ecol. 40, 120–129 (2002).

    Google Scholar 

  • Henschel, P. et al. Determinants of distribution patterns and management needs in a critically endangered lion (Panthera leo) population. Front. Ecol. Evol. 4, 1–14 (2016).

    Google Scholar 

  • Melubo, K. & Lovelock, B. Living inside a UNESCO World Heritage Site: The perspective of the Maasai community in Tanzania. Tour. Plan. Dev. 16, 197–216 (2019).

    Google Scholar 

  • Makupa, E. E. Conservation Efforts and Local Livelihoods in Western Serengeti, Tanzania: Experiences from Ikona Community Wildlife Management Area (University of Victoria, 2013).

  • Ndibalema, V. G. & Songorwa, A. N. Illegal meat hunting in serengeti: Dynamics in consumption and preferences. Afr. J. Ecol. 46, 311–319 (2008).

    Google Scholar 

  • Geldmann, J., Joppa, L. N. & Burgess, N. D. Mapping change in human pressure globally on land and within protected areas. Conserv. Biol. 28, 1604–1616 (2014).

    PubMed 

    Google Scholar 

  • Tuqa, J. H. et al. Impact of severe climate variability on lion home range and movement patterns in the Amboseli ecosystem, Kenya. Glob. Ecol. Conserv. 2, 1–10 (2014).

    Google Scholar 

  • Blackburn, S., Hopcraft, J. G. C., Ogutu, J. O., Matthiopoulos, J. & Frank, L. Human–wildlife conflict, benefit sharing and the survival of lions in pastoralist community-based conservancies. J. Appl. Ecol. 53, 1195–1205 (2016).

    Google Scholar 

  • Thirgood, S. et al. Can parks protect migratory ungulates? The case of the Serengeti wildebeest. Anim. Conserv. 7, 113–120 (2004).

    Google Scholar 

  • Wittemyer, G., Elsen, P., Bean, W. T., Burton, A. C. O. & Brashares, J. S. Accelerated human population growth at protected area edges. Science 321, 123–126 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hayward, M. W. & Kerley, G. I. H. Prey preferences and dietary overlap amongst Africa’s large predators. S. Afr. J. Wildl. Res. 38, 93–108 (2008).

    Google Scholar 

  • Mkonyi, F. J., Estes, A. B., Lichtenfeld, L. L. & Durant, S. M. Large carnivore distribution in relationship to environmental and anthropogenic factors in a multiple-use landscape of northern Tanzania. Afr. J. Ecol. 56, 972–983 (2018).

    Google Scholar 

  • Hill, J. E., De Vault, T. L. & Belant, J. L. A review of ecological factors promoting road use by mammals. Mamm. Rev. 51, 214–227 (2021).

    Google Scholar 

  • Hägerling, H. G. & Ebersole, J. J. Roads as travel corridors for mammals and ground birds in Tarangire National Park, Tanzania. Afr. J. Ecol. 55, 701–704 (2017).

    Google Scholar 

  • Bateman, P. W. & Fleming, P. A. Are negative effects of tourist activities on wildlife over-reported? A review of assessment methods and empirical results. Biol. Conserv. 211, 10–19 (2017).

    Google Scholar 

  • de Boer, W. F. et al. Spatial distribution of lion kills determined by the water dependency of prey species. J. Mammal. 91, 1280–1286 (2010).

    Google Scholar 

  • Loveridge, A. J., Valeix, M., Elliot, N. B. & Macdonald, D. W. The landscape of anthropogenic mortality: How African lions respond to spatial variation in risk. J. Appl. Ecol. 54, 815–825 (2017).

    Google Scholar 

  • Suraci, J. P. et al. Behavior-specific habitat selection by African lions may promote their persistence in a human-dominated landscape. Ecology 100, 1–11 (2019).

    Google Scholar 

  • Snyman, A., Raynor, E., Chizinski, C., Powell, L. & Carroll, J. African lion (Panthera leo) space use in the Greater Mapungubwe Transfrontier Conservation Area. Afr. J. Wildl. Res. 48, 023001 (2018).

    Google Scholar 

  • Mwakaje, A. G. et al. Community-based conservation, income governance, and poverty alleviation in Tanzania: The case of the Serengeti Ecosystem. J. Environ. Dev. 22, 51–73 (2013).

    Google Scholar 

  • Everatt, K. T., Moore, J. F. & Kerley, G. I. H. Africa’s apex predator, the lion, is limited by interference and exploitative competition with humans. Glob. Ecol. Conserv. 20, e00758 (2019).

    Google Scholar 


  • Source: Ecology - nature.com

    A short exposure to a semi-natural habitat alleviates the honey bee hive microbial imbalance caused by agricultural stress

    Phosphate limitation intensifies negative effects of ocean acidification on globally important nitrogen fixing cyanobacterium