WHO. Global plan for insecticide management. (World Health Organisation, Geneva, Switzerland 130, 2012).
WHO. Paludisme: situation mondiale. vol. 2507. World Health Organisation, Geneva, Switzerland, (2020).
WHO. Procédures pour tester la résistance aux insecticides chez les moustiques vecteurs du paludisme Seconde édition. (World Health Organisation, Geneva, Switzerland, 2017).
WHO. Guidelines for Malaria Vector Control. (World Health Organisation, Geneva, Switzerland, 2019).
Churcher, T. S., Lissenden, N., Griffin, J. T., Worrall, E. & Ranson, H. The impact of pyrethroid resistance on the efficacy and effectiveness of bednets for malaria control in Africa. Elife 5, 16090 (2016).
Hemingway, J. et al. Averting a malaria disaster: Will insecticide resistance derail malaria control?. Lancet 387, 1785–1788 (2016).
Google Scholar
Dabiré, K. R. et al. Trends in insecticide resistance in natural populations of malaria vectors in Burkina Faso, West Africa: 10 Years surveys K. INTECH 32, 479–502 (2012).
WHO. WHO Global Malaria Programme: Global Plan for insecticide resistance management. (World Health Organisation, Geneva, Switzerland, 2012).
Toe, K. H. et al. Do bednets including piperonyl butoxide offer additional protection against populations of Anopheles gambiae s.l. that are highly resistant to pyrethroids? An experimental hut evaluation in Burkina Faso. Med. Vet. Entomol. 32, 407–416 (2018).
Google Scholar
Hien, A. S. et al. Evidence supporting deployment of next generation insecticide treated nets in Burkina Faso: Bioassays with either chlorfenapyr or piperonyl butoxide increase mortality of pyrethroid-resistant Anopheles gambiae. Malar. J. 20, 1–12 (2021).
Zoubiri, S. & Baaliouamer, A. Potentiality of plants as source of insecticide principles. J. Saudi Chem. Soc. 18, 925–938 (2014).
Tripathi, A. K., Upadhyay, S., Bhuiyan, M. & Bhattacharya, P. R. A review on prospects of essential oils as biopesticide in insect-pest management. J. Pharmacogn. Phytother. 1, 52–63 (2009).
Google Scholar
Isman, M. B. Plant essential oils for pest and disease management. Crop Prot. 19, 603–608 (2000).
Google Scholar
Mossa, A. T. H. Green pesticides: Essential oils as biopesticides in insect-pest management. J. Environ. Sci. Technol. 9, 354–378 (2016).
Google Scholar
Lucia, A. et al. Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Aedes aegypti larvae. J. Am. Mosq. Control Assoc. 23, 299–303 (2007).
Google Scholar
Singh, R., Koul, O. & Rup, P. J. Toxicity of some essential oil constituents and their binary mixtures against Chilo partellus (Lepidoptera: Pyralidae). Int. J. Tropical Insect Sci. 29, 93–101 (2009).
Google Scholar
Sarma, R., Adhikari, K., Mahanta, S. & Khanikor, B. Combinations of plant essential oil based terpene compounds as larvicidal and adulticidal agent against Aedes aegypti (Diptera: Culicidae). Sci. Rep. 9, 1–13 (2019).
Google Scholar
Mansour, S. A., Foda, M. S. & Aly, A. R. Mosquitocidal activity of two Bacillus bacterial endotoxins combined with plant oils and conventional insecticides. Ind. Crops Prod. 35, 44–52 (2012).
Google Scholar
Yaméogo, F., Wendgida, D. W., Sombié, A., Sanon, A. & Badolo, A. Insecticidal activity of essential oils from six aromatic plants against Aedes aegypti, dengue vector from two localities of Ouagadougou Burkina Faso. Arthropod. Plant. Interact. 15, 627–634 (2021).
Wangrawa, D. W. et al. Essential oils and their binary combinations have synergistic and antagonistic insecticidal properties against Anopheles gambiae s l. (Diptera: Culicidae). Biocatal. Agric. Biotechnol. 42, 102347 (2022).
Google Scholar
Drabo, S. F., Olivier, G., Bassolé, I. H. N., Nébié, R. C. & Laurence, M. Susceptibility of MED-Q1 and MED-Q3 biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) populations to essential and seed oils. J. Econ. Entomol. 110, 1031–1038 (2017).
N’Guessan, R., Corbel, V., Akogbéto, M. & Rowland, M. Treated nets and indoor residual reduced efficacy of insecticide-pyrethroid resistance area benin. Emerg. Infect. Dis. 13, 199–206 (2007).
Google Scholar
WHO. Standard operating procedure for testing insecticide susceptibility of adult mosquitoes in WHO tube tests. (World Health Organisation, Geneva, Switzerland 2022).
Abbott, W. S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265–267 (1925).
Google Scholar
Schelz, Z., Molnar, J. & Hohmann, J. Antimicrobial and antiplasmid activities of essential oils. Fitoterapia 77, 279–285 (2006).
Google Scholar
Bassolé, I. H. N. & Juliani, H. R. Essential oils in combination and their antimicrobial properties. Molecules 17, 3989–4006 (2012).
Google Scholar
WHO. Test Procedures for Insecticide Resistance Monitoring in Malaria Vector Mosquitoes Second edition. (World Health Organisation, Geneva, Switzerland 2016).
Tchoumbougnang, F. et al. Activité larvicide sur Anopheles gambiae giles et composition chimique des huiles essentielles extraites de quatre plantes cultivées au Cameroun. Biotechnol. Agron. Soc. Environ. 13, 77–84 (2009).
Google Scholar
Ranson, H. & Lissenden, N. Insecticide resistance in African Anopheles mosquitoes: A worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 32, 187–196 (2016).
Google Scholar
Wangrawa, D. et al. Insecticidal activity of local plants essential oils against laboratory and field strains of Anopheles gambiae s. L. (Diptera: Culicidae) from Burkina Faso. J. Econ. Entomol. 111, 2844–2853 (2018).
Google Scholar
Gbolade, A. A. & Lockwood, G. B. Toxicity of Ocimum sanctum L. essential oil to Aedes aegypti larvae and its chemical composition. J. Essent. Oil Bearing Plants 11, 148–153 (2008).
Google Scholar
Vani, R. S., Cheng, S. F. & Chuah, C. H. Comparative study of volatile compounds from genus Ocimum. Am. J. Appl. Sci. 6, 523–528 (2009).
Google Scholar
Bassolé, et al. Ovicidal and larvicidal activity against Aedes aegypti and Anopheles gambiae complex mosquitoes of essential oils extracted from three spontaneous plants of Burkina Faso. Parasitologia 45, 23–26 (2003).
Peerzada, N. Chemical composition of the essential oil of Hyptis Suaveolens. Molecules 2, 165–168 (1997).
Google Scholar
Ilboudo, Z. et al. Biological activity and persistence of four essential oils towards the main pest of stored cowpeas, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J. Stored Prod. Res. 46, 124–128 (2010).
Google Scholar
Zulfikar, A. & Sitepu, F. Y. The effect of lemongrass (Cymbopogon nardus) extract as insecticide against Aedes aegypti. Int. J. Mosq. Res. 6, 101–103 (2019).
Ojewumi, E. M., Oladipupo, A. A. & Ojewumi, O. E. Oil extract from local leaves an alternative to synthetic mosquito repellants. Pharmacophore 9, 1–6 (2018).
Gnankiné, O. & Bassolé, I. H. N. Essential oils as an alternative to pyrethroids resistance against Anopheles species complex giles (Diptera: Culicidae). Molecules 22, 1321 (2017).
Google Scholar
Bossou, A. D. et al. Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles). Parasit. Vectors 6, 337 (2013).
Google Scholar
Balboné, et al. Essential oils from five local plants: An alternative larvicide for Anopheles gambiae s. I. (Diptera: Culicidae) and Aedes aegypti (Diptera: Culicidae) control in Western Burkina Faso. Front. Trop. Dis. 3, 853405 (2022).
Bekele, J. & Hassanali, A. Blend effects in the toxicity of the essential oil constituents of Ocimum kilimandscharicum and Ocimum kenyense (Labiateae) on two post-harvest insect pests. Phytochemistry 57, 385–391 (2001).
Google Scholar
Pavela, R. Acute and synergistic effects of some monoterpenoid essential oil compounds on the house fly (Musca domestica). J. Essent. Oil Bearing Plants 11, 451–459 (2008).
Google Scholar
Tanprasit, P. Biological control of dengue fever mosquitoes (Aedes aegypti Linn.) using leaf extracts of Chan (Hyptis suaveolens (L) poit.) and hedge flower Lantana camara Linn.). (2005).
Park, H. M. et al. Larvicidal activity of myrtaceae essential oils and their components against Aedes aegypti, acute toxicity on Daphnia magna, and aqueous residue. J. Med. Entomol. 48, 405–410 (2011).
Google Scholar
Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 94, 223–253 (2004).
Google Scholar
Abbassy, M. A., Abdelgaleil, S. A. M. & Rabie, R. Y. A. Insecticidal and synergistic effects of Majorana hortensis essential oil and some of its major constituents. Entomol. Exp. Appl. 131, 225–232 (2009).
Google Scholar
Chiasson, H., Bélanger, A., Bostanian, N., Vincent, C. & Poliquin, A. Acaricidal properties of Artemisia absinthium and Tanacetum vulgare (Asteraceae) essential oils obtained by three methods of extraction. J. Econ. Entomol. 94, 167–171 (2001).
Google Scholar
Luz, T. R. S. A., deMesquita, L. S. S., Amaral, F. M. M. & Coutinho, D. F. Essential oils and their chemical constituents against Aedes aegypti L. (Diptera: Culicidae) larvae. Acta Trop. 212, 105705 (2020).
Google Scholar
Deletre, E., Mallent, M., Menut, C., Chandre, F. & Martin, T. Behavioral response of Bemisia tabaci (Hemiptera: Aleyrodidae) to 20 plant extracts. J. Econ. Entomol. 108, 1890–1901 (2015).
Berenbaum, M. A. Y. & Neal, J. J. Synergism between myristicin and xanthotoxin, a naturally cooccurring plant toxicant. J. Chem. Ecol. 11, 1349–1358 (1985).
Google Scholar
Intirach, J. et al. Chemical constituents and combined larvicidal effects of selected essential oils against Anopheles cracens (Diptera: Culicidae). Psyche (London) https://doi.org/10.1155/2012/591616 (2012).
Pavela, R. Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind. Crops Prod. 60, 247–258 (2014).
Google Scholar
Muturi, E. J., Ramirez, J. L., Doll, K. M. & Bowman, M. J. Combined toxicity of three essential oils against Aedes aegypti (Diptera: Culicidae) larvae. J. Med. Entomol. 54, 1684–1691 (2017).
Google Scholar
Source: Ecology - nature.com