in

Distinct effects of three Wolbachia strains on fitness and immune traits in Homona magnanima

  • Ahmed MZ, Li SJ, Xue X, Yin XJ, Ren SX, Jiggins FM et al. (2015) The Intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmission. PLoS Pathog 11:1–19

    Google Scholar 

  • Arai H, Hirano T, Akizuki N, Abe A, Nakai M, Kunimi Y et al. (2019) Multiple infection and reproductive manipulations of Wolbachia in Homona magnanima (Lepidoptera: Tortricidae). Microb Ecol 77:257–266

    PubMed 

    Google Scholar 

  • Arai H, Lin SR, Nakai M, Kunimi Y, Inoue MN (2020) Closely related male-killing and nonmale-killing Wolbachia strains in the oriental tea tortrix Homona magnanima. Microb Ecol 79:1011–1020

    CAS 
    PubMed 

    Google Scholar 

  • Bailey NW, Zuk M (2008) Changes in immune effort of male field crickets infested with mobile parasitoid larvae. J Insect Physiol 54:96–104

    CAS 
    PubMed 

    Google Scholar 

  • Ballad JWO, Hatzidakis J, Karr TL, Kreitman M (1996) Reduced variation in Drosophila simulans mitochondrial DNA. Genetics 144:1519–1528

    Google Scholar 

  • Birch LC (1948) The intrinsic rate of natural increase of an insect population. J Anim Ecol 17:15–26

    Google Scholar 

  • Capobianco IIIF, Nandkumar S, Parker JD (2018) Wolbachia affects survival to different oxidative stressors dependent upon the genetic background in Drosophila melanogaster. Physiol Entomol 43:239–244

    Google Scholar 

  • Danthanarayana W (1975) Factors determining variation in fecundity of the light brown apple moth, Epiphyas postvittana (Walker) (Tortricidae). Aust J Zool 23:309–319

    Google Scholar 

  • Dean MD (2006) A Wolbachia-associated fitness benefit depends on genetic background in Drosophila simulans. Proc R Soc B 273:1415–1420

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deseo KV (1971) Study of factors influencing the fecundity and fertility of codling moth (Laspeyresia pomonella L., Lepidoptera, Tortricidae). Acta Phytopathol Hun 6:243–252

    Google Scholar 

  • Dobson SL, Rattanadechakul W, Marsland EJ (2004) Fitness advantage and cytoplasmic incompatibility in Wolbachia single-and superinfected Aedes albopictus. Heredity 93:135–142

    CAS 
    PubMed 

    Google Scholar 

  • Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstädter J, Hurst GD (2008) The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol 6:1–12

    Google Scholar 

  • Engelstädter J, Telschow A, Hammerstein P (2004) Infection dynamics of different Wolbachia-types within one host population. J Theor Biol 231:345–55

    PubMed 

    Google Scholar 

  • Fleury F, Vavre F, Ris N, Fouillet P, Boulétreau M (2000) Physiological cost induced by the maternally-transmitted endosymbiont Wolbachia in the Drosophila parasitoid Leptopilina heterotoma. Parasitology 121:493–500

    PubMed 

    Google Scholar 

  • Frank SA (1998) Dynamics of cytoplasmic incompatibility with multiple Wolbachia infections. J Theor Biol 192:213–18

    CAS 
    PubMed 

    Google Scholar 

  • Frank SA, Hurst LD (1996) Mitochondria and male disease. Nature 383:224–224

    CAS 
    PubMed 

    Google Scholar 

  • Fry AJ, Palmer MR, Rand DM (2004) Variable fitness effects of Wolbachia infection in Drosophila melanogaster. Heredity 93:379–389

    CAS 
    PubMed 

    Google Scholar 

  • Gómez-Valero L, Soriano-Navarro M, Pérez-Brocal V, Heddi A, Moya A, García-Verdugo JM, Latorre A (2004) Coexistence of Wolbachia with Buchnera Aphidicola and a secondary symbiont in the aphid Cinara cedri. J Bacteriol 186:6626–33

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoffmann AA, Turelli M, Harshman LG (1990) Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics 126:933–948

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hornett EA, Charlat S, Duplouy AMR, Davies N, Roderick GK, Wedell N et al. (2006) Evolution of male-killer suppression in a natural population. PLoS Biol 4:1643–1648

    CAS 

    Google Scholar 

  • Hough JA, Pimentel D (1978) Influence of host foliage on development, survival, and fecundity of the gypsy moth. Environ Entomol 7:97–102

    Google Scholar 

  • Ikeda T, Ishikawa H, Sasaki T (2003) Infection density of Wolbachia and level of cytoplasmic incompatibility in the Mediterranean flour moth, Ephestia kuehniella. J Invertebr Pathol 84:1–5

    PubMed 

    Google Scholar 

  • Ishii T, Nakai M, Okuno S, Takatsuka J, Kunimi Y (2003) Characterization of Adoxophyes honmai single-nucleocapsid nucleopolyhedrovirus: morphology, structure, and effects on larvae. J Invertebr Pathol 83:206–214

    CAS 
    PubMed 

    Google Scholar 

  • Kondo N, Shimada M, Fukatsu T (2005) Infection density of Wolbachia endosymbiont affected by coinfection and host genotype. Biol Lett 1:488–491

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu P, Bian G, Pan X, Xi Z (2012) Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells. PLoS Negl Trop D 6:1–8

    CAS 

    Google Scholar 

  • Maia AHN, Luiz AJB, Campanhola C (2000) Statistical inference on associated fertility life table parameters using jackknife technique: computational aspects. J Econ Entomol 93:511–518

    Google Scholar 

  • Mazzetto F, Gonella E, Alma A (2015) Wolbachia infection affects female fecundity in Drosophila suzukii. Bull Insectol 68:153–157

    Google Scholar 

  • Meyer JS, Ingersoll CG, McDonald LL, Boyce MS (1986) Estimating uncertainty in population growth rates: jackknife vs. bootstrap techniques. Ecology 67:1156–1166

    Google Scholar 

  • Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM et al. (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139:1268–1278

    PubMed 

    Google Scholar 

  • Mouton L, Henri H, Bouletreau M, Vavre F (2006) Effect of temperature on Wolbachia density and impact on cytoplasmic incompatibility. Parasitology 132:49–56

    CAS 
    PubMed 

    Google Scholar 

  • Narita S, Nomura M, Kageyama D (2007) Naturally occurring single and double infection with Wolbachia strains in the butterfly Eurema hecabe: transmission efficiencies and population density dynamics of each Wolbachia strain. FEMS Microb Ecol 61:235–245

    CAS 

    Google Scholar 

  • Pigeault R, Braquart-Varnier C, Marcadé I, Mappa G, Mottin E, Sicard M (2014) Modulation of host immunity and reproduction by horizontally acquired Wolbachia. J Insect Physiol 70:125–133

    CAS 
    PubMed 

    Google Scholar 

  • Rancès E, Ye YH, Woolfit M, McGraw EA, O´Neill SL (2012) The relative importance of innate immune priming in Wolbachia-mediated dengue interference. PLoS Pathog 8:e1002548. https://doi.org/10.1371/journal.ppat.1002548

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Stevanovic AL, Arnold PA, Johnson KN (2015) Wolbachia -mediated antiviral protection in Drosophila larvae and adults following oral infection. Appl Environ Micro 81:8215–8223

    CAS 

    Google Scholar 

  • Takamatsu T, Arai H, Abe N, Nakai M, Kunimi Y, Inoue MN (2021) Coexistence of two male-killers and their impact on the development of oriental tea tortrix Homona magnanima. Microb Ecol 81:193–202

    CAS 
    PubMed 

    Google Scholar 

  • Takehana A, Katsuyama T, Yano T, Oshima Y, Takada H, Aigaki T et al. (2002) Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc Natl Acad Sci USA 99:13705–13710

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takatsuka J, Okuno S, Ishii T, Nakai M, Kunimi Y (2010) Fitness-related traits of entomopoxviruses isolated from Adoxophyes honmai (Lepidoptera: Tortricidae) at three localities in Japan. J Invertebr Pathol 105:121–131

    PubMed 

    Google Scholar 

  • Teixeira L, Ferreira Á, Ashburner M (2008) The Bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6:e1000002. https://doi.org/10.1371/journal.pbio.1000002

    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • Thomas P, Kenny N, Eyles D, Moreira LA, O´Neill SL, Asgari S (2011) Infection with the wMel and wMelPop strains of Wolbachia leads to higher levels of melanization in the hemolymph of Drosophila melanogaster, Drosophila simulans and Aedes aegypti. Dev Comp Immunol 35:360–365

    CAS 
    PubMed 

    Google Scholar 

  • Tsuruta K, Wennmann JT, Kunimi Y, Inoue MN, Nakai M (2018) Morphological properties of the occlusion body of Adoxophyes orana granulovirus. J Invertebr Pathol 154:58–64

    CAS 
    PubMed 

    Google Scholar 

  • Turelli M, Hoffmann AA (1991) Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353:440–442

    CAS 
    PubMed 

    Google Scholar 

  • Vautrin E, Vavre F (2009) Interactions between vertically transmitted symbionts: cooperation or conflict? Trends Microbiol 17:95–99

    CAS 
    PubMed 

    Google Scholar 

  • Vavre F, Fleury F, Lepetit D, Fouillet P, Boulétreau M (1999) Phylogenetic evidence for horizontal transmission of Wolbachia in host- parasitoid associations. Mol Biol Evol 16:1711–1723

    CAS 
    PubMed 

    Google Scholar 

  • Vollmer J, Schiefer A, Schneider T, Jülicher K, Johnston KL, Taylor MJ et al. (2013) Requirement of lipid II biosynthesis for cell division in cell wall-less Wolbachia, endobacteria of arthropods and filarial nematodes. Int J Med Microbiol 303:140–149

    CAS 
    PubMed 

    Google Scholar 

  • Voronin D, Guimarães AF, Molyneux GR, Johnston KL, Ford L, Taylor MJ (2014) Wolbachia lipoproteins: abundance, localization and serology of Wolbachia peptidoglycan associated lipoprotein and the Type IV Secretion System component, VirB6 from Brugia malayi and Aedes albopictus. Parasite Vector 7:462

    Google Scholar 

  • Watanabe M, Miura K, Hunter MS, Wajnberg E (2011) Superinfection of cytoplasmic incompatibility-inducing Wolbachia is not additive in Orius strigicollis (Hemiptera: Anthocoridae). Heredity 106:642–648

    CAS 
    PubMed 

    Google Scholar 

  • Weeks AR, Turelli M, Harcombe WR, Reynolds KT, Hoffmann AA (2007) From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biol 5:0997–1005

    CAS 

    Google Scholar 

  • Werren JH, Baldo L, Clark ME (2008) Wolbachia: Master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751

    CAS 
    PubMed 

    Google Scholar 

  • Xue X, Li S, Ahmed MZ, Barro PJ, Ren S, Qiu B (2012) Inactivation of Wolbachia reveals its biological roles in whitefly host. PLoS One 7:e48148. https://doi.org/10.1371/journal.pone.0048148

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zug R, Hammerstein P (2012) Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One 7:e38544. https://doi.org/10.1371/journal.pone.0038544

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zug R, Hammerstein P (2015) Wolbachia and the insect immune system: what reactive oxygen species can tell us about the mechanisms of Wolbachia-host interactions. Front Microbiol 6:1–16

    Google Scholar 


  • Source: Ecology - nature.com

    The expanding value of long-term studies of individuals in the wild

    Advancing the energy transition amidst global crises