in

Abundant and cosmopolitan lineage of cyanopodoviruses lacking a DNA polymerase gene

  • Suttle CA. Marine viruses-major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.

    CAS 
    PubMed 

    Google Scholar 

  • Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature 1999;399:541–8.

    CAS 
    PubMed 

    Google Scholar 

  • Rohwer F, Thurber RV. Viruses manipulate the marine environment. Nature 2009;459:207–12.

    CAS 
    PubMed 

    Google Scholar 

  • Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.

    CAS 
    PubMed 

    Google Scholar 

  • Zimmerman AE, Howard-Varona C, Needham DM, John SG, Worden AZ, Sullivan MB, et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol. 2020;18:21–34.

    CAS 
    PubMed 

    Google Scholar 

  • Rosenwasser S, Ziv C, Creveld SGV, Vardi A. Virocell metabolism: metabolic innovations during host-virus interactions in the ocean. Trends Microbiol. 2016;24:821–32.

    CAS 
    PubMed 

    Google Scholar 

  • Fuchsman CA, Carlson MCG, Garcia Prieto D, Hays MD, Rocap G. Cyanophage host-derived genes reflect contrasting selective pressures with depth in the oxic and anoxic water column of the Eastern Tropical North Pacific. Environ Microbiol. 2021;23:2782–2800.

    CAS 
    PubMed 

    Google Scholar 

  • Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 2016;537:689–93.

    CAS 
    PubMed 

    Google Scholar 

  • Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, et al. Marine DNA viral macro-and microdiversity from pole to pole. Cell 2019;177:1109–23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG, Alberti A, et al. Patterns and ecological drivers of ocean viral communities. Science 2015;348:1261498.

    PubMed 

    Google Scholar 

  • Dion MB, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny. Nat Rev Microbiol. 2020;18:125–38.

    CAS 
    PubMed 

    Google Scholar 

  • Sullivan MB, Waterbury JB, Chisholm SW. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 2003;424:1047–51.

    CAS 
    PubMed 

    Google Scholar 

  • Mann NH. Phages of the marine cyanobacterial picophytoplankton. FEMS Microbiol Rev. 2003;27:17–34.

    CAS 
    PubMed 

    Google Scholar 

  • Ni T, Zeng Q. Diel infection of cyanobacteria by cyanophages. Front Mar Sci. 2016;2:123.

    Google Scholar 

  • Flombaum P, Gallegos JL, Gordillo RA, Rincon J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA 2013;110:9824–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Biller SJ, Berube PM, Lindell D, Chisholm SW. Prochlorococcus: the structure and function of collective diversity. Nat Rev Microbiol 2015;13:13–27.

    CAS 
    PubMed 

    Google Scholar 

  • Proctor LM, Fuhrman JA. Viral mortality of marine-bacteria and cyanobacteria. Nature 1990;343:60–62.

    Google Scholar 

  • Carlson MCG, Ribalet F, Maidanik I, Durham BP, Hulata Y, Ferron S, et al. Viruses affect picocyanobacterial abundance and biogeography in the North Pacific Ocean. Nat Microbiol 2022;7:570–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matteson AR, Loar SN, Pickmere S, DeBruyn JM, Ellwood MJ, Boyd PW, et al. Production of viruses during a spring phytoplankton bloom in the South Pacific Ocean near of New Zealand. FEMS Microbiol Ecol 2012;79:709–19.

    CAS 
    PubMed 

    Google Scholar 

  • Ribalet F, Swalwell J, Clayton S, Jimenez V, Sudek S, Lin Y, et al. Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre. Proc Natl Acad Sci USA. 2015;112:8008–12.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Demory D, Liu R, Chen Y, Zhao F, Coenen AR, Zeng Q, et al. Linking light-dependent life history traits with population dynamics for Prochlorococcus and cyanophage. mSystems 2020;5:e00586–19.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Avrani S, Wurtzel O, Sharon I, Sorek R, Lindell D. Genomic island variability facilitates Prochlorococcus-virus coexistence. Nature 2011;474:604–8.

    CAS 
    PubMed 

    Google Scholar 

  • Marston MF, Pierciey FJ Jr, Shepard A, Gearin G, Qi J, Yandava C, et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc Natl Acad Sci USA 2012;109:4544–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiao X, Guo W, Li X, Wang C, Chen X, Lin X, et al. Viral lysis alters the optical properties and biological availability of dissolved organic matter derived from Prochlorococcus picocyanobacteria. Appl Environ Microbiol. 2021;87:e02271–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiao X, Zeng Q, Zhang R, Jiao N. Prochlorococcus viruses—From biodiversity to biogeochemical cycles. Sci China Earth Sci. 2018;61:1728–36.

    Google Scholar 

  • Jover LF, Effler TC, Buchan A, Wilhelm SW, Weitz JS. The elemental composition of virus particles: implications for marine biogeochemical cycles. Nat Rev Microbiol. 2014;12:519–28.

    CAS 
    PubMed 

    Google Scholar 

  • Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. Viruses inhibit CO2 fixation in the most abundant phototrophs on earth. Curr Biol 2016;26:1585–9.

    CAS 
    PubMed 

    Google Scholar 

  • Weitz JS, Stock CA, Wilhelm SW, Bourouiba L, Coleman ML, Buchan A, et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J. 2015;9:1352–64.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW. Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol. 2005;3:e144.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sullivan MB, Krastins B, Hughes JL, Kelly L, Chase M, Sarracino D, et al. The genome and structural proteome of an ocean siphovirus: a new window into the cyanobacterial ‘mobilome’. Environ Microbiol. 2009;11:2935–51.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sullivan MB, Huang KH, Ignacio-Espinoza JC, Berlin AM, Kelly L, Weigele PR, et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol. 2010;12:3035–56.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sabehi G, Shaulov L, Silver DH, Yanai I, Harel A, Lindell D. A novel lineage of myoviruses infecting cyanobacteria is widespread in the oceans. Proc Natl Acad Sci USA 2012;109:2037–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang S, Wang K, Jiao N, Chen F. Genome sequences of siphoviruses infecting marine Synechococcus unveil a diverse cyanophage group and extensive phage-host genetic exchanges. Environ Microbiol. 2012;14:540–58.

    CAS 
    PubMed 

    Google Scholar 

  • Labrie SJ, Frois-Moniz K, Osburne MS, Kelly L, Roggensack SE, Sullivan MB, et al. Genomes of marine cyanopodoviruses reveal multiple origins of diversity. Environ Microbiol. 2013;15:1356–76.

    CAS 
    PubMed 

    Google Scholar 

  • Dekel-Bird NP, Avrani S, Sabehi G, Pekarsky I, Marston MF, Kirzner S, et al. Diversity and evolutionary relationships of T7-like podoviruses infecting marine cyanobacteria. Environ Microbiol. 2013;15:1476–91.

    CAS 
    PubMed 

    Google Scholar 

  • Huang S, Wilhelm SW, Jiao N, Chen F. Ubiquitous cyanobacterial podoviruses in the global oceans unveiled through viral DNA polymerase gene sequences. ISME J. 2010;4:1243–51.

    PubMed 

    Google Scholar 

  • Baran N, Goldin S, Maidanik I, Lindell D. Quantification of diverse virus populations in the environment using the polony method. Nat Microbiol. 2018;3:62–72.

    CAS 
    PubMed 

    Google Scholar 

  • Chow C-ET, Suttle CA. Biogeography of viruses in the sea. Annu Rev Virol. 2015;2:41–66.

    CAS 
    PubMed 

    Google Scholar 

  • Chen F, Lu JR. Genomic sequence and evolution of marine cyanophage P60: a new insight on lytic and lysogenic phages. Appl Environ Microbiol. 2002;68:2589–94.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang S, Zhang S, Jiao N, Chen F. Comparative genomic and phylogenomic analyses reveal a conserved core genome shared by estuarine and oceanic cyanopodoviruses. PLoS One. 2015;10:e0142962.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pope WH, Weigele PR, Chang J, Pedulla ML, Ford ME, Houtz JM, et al. Genome sequence, structural proteins, and capsid organization of the cyanophage Syn5: A “horned’ bacteriophage of marine Synechococcus. J Mol Biol. 2007;368:966–81.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang S, Sun Y, Zhang S, Long L. Temporal transcriptomes of a marine cyanopodovirus and its Synechococcus host during infection. Microbiologyopen 2021;10:e1150.

    CAS 
    PubMed 

    Google Scholar 

  • Wang K, Chen F. Prevalence of highly host-specific cyanophages in the estuarine environment. Environ Microbiol. 2008;10:300–12.

    CAS 
    PubMed 

    Google Scholar 

  • Chen F, Wang K, Huang S, Cai H, Zhao M, Jiao N, et al. Diverse and dynamic populations of cyanobacterial podoviruses in the Chesapeake Bay unveiled through DNA polymerase gene sequences. Environ Microbiol. 2009;11:2884–92.

    PubMed 

    Google Scholar 

  • Goldin S, Hulata Y, Baran N, Lindell D. Quantification of T4-like and T7-like cyanophages using the polony method show they are significant members of the virioplankton in the North Pacific Subtropical Gyre. Front Microbiol. 2020;11:1210.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nasko DJ, Chopyk J, Sakowski EG, Ferrell BD, Polson SW, Wommack KE. Family A DNA polymerase phylogeny uncovers diversity and replication gene organization in the virioplankton. Front Microbiol. 2018;9:3053.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dekel-Bird NP, Sabehi G, Mosevitzky B, Lindell D. Host-dependent differences in abundance, composition and host range of cyanophages from the Red Sea. Environ Microbiol. 2015;17:1286–99.

    CAS 
    PubMed 

    Google Scholar 

  • Hanson CA, Marston MF, Martiny JBH. Biogeographic variation in host range phenotypes and taxonomic composition of marine cyanophage isolates. Front Microbiol. 2016;7:983.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 2003;424:1042–7.

    CAS 
    PubMed 

    Google Scholar 

  • Chen B, Wang L, Song S, Huang B, Sun J, Liu H. Comparisons of picophytoplankton abundance, size, and fluorescence between summer and winter in northern South China Sea. Cont Shelf Res. 2011;31:1527–40.

    Google Scholar 

  • Lindell D, Jaffe JD, Coleman ML, Futschik ME, Axmann IM, Rector T, et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature 2007;449:83–86.

    CAS 
    PubMed 

    Google Scholar 

  • Zhao Y, Qin F, Zhang R, Giovannoni SJ, Zhang Z, Sun J, et al. Pelagiphages in the Podoviridae family integrate into host genomes. Environ Microbiol. 2019;21:1989–2001.

    CAS 
    PubMed 

    Google Scholar 

  • Leptihn S, Gottschalk J, Kuhn A. T7 ejectosome assembly: A story unfolds. Bacteriophage 2016;6:e1128513.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU, Stubbe J, et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc Natl Acad Sci USA 2011;108:E757–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zeng Q, Chisholm SW. Marine viruses exploit their host’s two-component regulatory system in response to resource limitation. Curr Biol 2012;22:124–8.

    CAS 
    PubMed 

    Google Scholar 

  • Zeng Q, Bonocora RP, Shub DA. A free-standing homing endonuclease targets an intron insertion site in the psbA gene of cyanophages. Curr Biol. 2009;19:218–22.

    CAS 
    PubMed 

    Google Scholar 

  • Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW. Photosynthesis genes in marine viruses yield proteins during host infection. Nature 2005;438:86–89.

    CAS 
    PubMed 

    Google Scholar 

  • Breitbart M, Thompson LR, Suttle CA, Sullivan MB. Exploring the vast diversity of marine viruses. Oceanography. 2007;20:135–9.

    Google Scholar 

  • Kazlauskas D, Venclovas C. Computational analysis of DNA replicases in double-stranded DNA viruses: relationship with the genome size. Nucleic Acids Res. 2011;39:8291–305.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu X, Zhang Q, Murata K, Baker ML, Sullivan MB, Fu C, et al. Structural changes in a marine podovirus associated with release of its genome into Prochlorococcus. Nat Struct Mol Biol. 2010;17:830–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dai W, Fu C, Raytcheva D, Flanagan J, Khant HA, Liu XG, et al. Visualizing virus assembly intermediates inside marine cyanobacteria. Nature 2013;502:707–10.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu R, Liu Y, Chen Y, Zhan Y, Zeng Q. Cyanobacterial viruses exhibit diurnal rhythms during infection. Proc Natl Acad Sci USA 2019;116:14077–82.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maidanik I, Kirzner S, Pekarski I, Arsenieff L, Tahan R, Carlson MCG, et al. Cyanophages from a less virulent clade dominate over their sister clade in global oceans. ISME J. 2022;16:2169–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shitrit D, Hackl T, Laurenceau R, Raho N, Carlson MCG, Sabehi G, et al. Genetic engineering of marine cyanophages reveals integration but not lysogeny in T7-like cyanophages. ISME J. 2022;16:488–99.

    CAS 
    PubMed 

    Google Scholar 

  • Liang Y, Wang L, Wang Z, Zhao J, Yang Q, Wang M, et al. Metagenomic analysis of the diversity of DNA viruses in the surface and deep sea of the South China Sea. Front Microbiol. 2019;10:1951.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pedrós-Alió C, Potvin M, Lovejoy C. Diversity of planktonic microorganisms in the Arctic Ocean. Prog Oceanogr. 2015;139:233–43.

    Google Scholar 

  • Luo E, Eppley JM, Romano AE, Mende DR, DeLong EF. Double-stranded DNA virioplankton dynamics and reproductive strategies in the oligotrophic open ocean water column. ISME J. 2020;14:1304–15.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steidinger BS, Crowther TW, Liang J, Van Nuland ME, Werner GDA, Reich PB, et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 2019;569:404–8.

    CAS 
    PubMed 

    Google Scholar 

  • Xie X, Wu T, Zhu M, Jiang G, Xu Y, Wang X, et al. Comparison of random forest and multiple linear regression models for estimation of soil extracellular enzyme activities in agricultural reclaimed coastal saline land. Ecol Indic. 2021;120:106925.

    CAS 

    Google Scholar 

  • Lee SJ, Richardson CC. Choreography of bacteriophage T7 DNA replication. Curr Opin Chem Biol. 2011;15:580–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kulczyk AW, Richardson CC. The replication system of bacteriophage T7. Enzymes. 2016;39:89–136.

    CAS 
    PubMed 

    Google Scholar 

  • Benkovic SJ, Valentine AM, Salinas F. Replisome-mediated DNA replication. Annu Rev Biochem. 2001;70:181–208.

    CAS 
    PubMed 

    Google Scholar 

  • Johnson A, O’Donnell M. Cellular DNA replicases: components and dynamics at the replication fork. Annu Rev Biochem. 2005;74:283–315.

    CAS 
    PubMed 

    Google Scholar 

  • Seco EM, Zinder JC, Manhart CM, Lo Piano A, McHenry CS, Ayora S. Bacteriophage SPP1 DNA replication strategies promote viral and disable host replication in vitro. Nucleic Acids Res. 2013;41:1711–21.

    CAS 
    PubMed 

    Google Scholar 

  • Mruwat N, Carlson MCG, Goldin S, Ribalet F, Kirzner S, Hulata Y, et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J. 2021;15:41–54.

    CAS 
    PubMed 

    Google Scholar 

  • Moore LR, Rocap G, Chisholm SW. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 1998;393:464–7.

    CAS 
    PubMed 

    Google Scholar 

  • Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. Shedding new light on viral photosynthesis. Photosynth Res. 2015;126:71–97.

    CAS 
    PubMed 

    Google Scholar 

  • Edwards KF, Steward GF, Schvarcz CR. Making sense of virus size and the tradeoffs shaping viral fitness. Ecol Lett. 2021;24:363–73.

    PubMed 

    Google Scholar 

  • Moore LR, Coe A, Zinser ER, Saito MA, Sullivan MB, Lindell D, et al. Culturing the marine cyanobacterium Prochlorococcus. Limnol Oceanogr Methods. 2007;5:353–62.

    CAS 

    Google Scholar 

  • Hyman P, Abedon ST. Bacteriophage host range and bacterial resistance. Adv Appl Microbiol. 2010;70:217–48.

    CAS 
    PubMed 

    Google Scholar 

  • Fridman S, Flores-Uribe J, Larom S, Alalouf O, Liran O, Yacoby I, et al. A myovirus encoding both photosystem I and II proteins enhances cyclic electron flow in infected Prochlorococcus cells. Nat Microbiol. 2017;2:1350–7.

    CAS 
    PubMed 

    Google Scholar 

  • Fang X, Liu Y, Zhao Y, Chen Y, Liu R, Qin QL, et al. Transcriptomic responses of the marine cyanobacterium Prochlorococcus to viral lysis products. Environ Microbiol. 2019;21:2015–28.

    CAS 
    PubMed 

    Google Scholar 

  • John SG, Mendez CB, Deng L, Poulos B, Kauffman AK, Kern S, et al. A simple and efficient method for concentration of ocean viruses by chemical flocculation. Environ Microbiol Rep. 2011;3:195–202.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011;27:863–4.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:1–10.

    Google Scholar 

  • Peng Y, Leung HC, Yiu SM, Chin FY. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012;28:1420–8.

    CAS 
    PubMed 

    Google Scholar 

  • Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–9.

    CAS 
    PubMed 

    Google Scholar 

  • Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic Inference in the genomic era. Mol Biol Evol. 2020;37:2461–2461.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35:518–22.

    CAS 
    PubMed 

    Google Scholar 

  • Martinez-Hernandez F, Fornas O, Lluesma Gomez M, Bolduc B, de la Cruz Pena MJ, Martinez JM, et al. Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat Commun. 2017;8:15892.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Z, Qin F, Chen F, Chu X, Luo H, Zhang R, et al. Culturing novel and abundant pelagiphages in the ocean. Environ Microbiol 2021;23:1145–61.

    CAS 
    PubMed 

    Google Scholar 

  • Buchholz HH, Michelsen ML, Bolanos LM, Browne E, Allen MJ, Temperton B. Efficient dilution-to-extinction isolation of novel virus-host model systems for fastidious heterotrophic bacteria. ISME J. 2021;15:1585–98.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qin F, Du S, Zhang Z, Ying H, Wu Y, Zhao G, et al. Newly identified HMO-2011-type phages reveal genomic diversity and biogeographic distributions of this marine viral group. ISME J. 2022;16:1363–75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Advancing the energy transition amidst global crises

    MIT PhD students shed light on important water and food research