Precht, W. F., Gintert, B. E., Robbart, M. L., Fura, R. & van Woesik, R. Unprecedented disease-related coral mortality in Southeastern Florida. Sci. Rep. 6, 31374 (2016).
Google Scholar
NOAA. Stony Coral Tissue Loss Disease Case Definition. NOAA, Silver Spring, MD 10 (2018).
Aeby, G. S. et al. Pathogenesis of a tissue loss disease affecting multiple species of corals along the Florida Reef Tract. Front Mar. Sci. 6, 00678 (2019).
Landsberg, J. H. et al. Stony coral tissue loss disease in Florida is associated with disruption of host–zooxanthellae physiology. Front Mar. Sci. 7, 576013 (2020).
Neely, K. L., Macaulay, K. A., Hower, E. K. & Dobler, M. A. Effectiveness of topical antibiotics in treating corals affected by Stony Coral Tissue Loss Disease. PeerJ 8, 9289 (2020).
Shilling, E. N., Combs, I. R. & Voss, J. D. Assessing the effectiveness of two intervention methods for stony coral tissue loss disease on Montastraea cavernosa. Sci. Rep. 11, 8566 (2021).
Google Scholar
Walker, B. K., Turner, N. R., Noren, H. K. G., Buckley, S. F. & Pitts, K. A. Optimizing stony coral tissue loss disease (SCTLD) intervention treatments on Montastraea cavernosa in an endemic zone. Front Mar. Sci. 8, 666224 (2021).
Work, T. M. et al. Viral-like particles are associated with endosymbiont pathology in Florida corals affected by stony coral tissue loss disease. Front Mar. Sci. 8, 750658 (2021).
Veglia, A. J. et al. Alphaflexivirus genomes in stony coral tissue loss disease-affected, disease-exposed, and disease-unexposed coral colonies in the U.S. Virgin Islands. Microbiol. Resource Announc. 11, e01199-e1221 (2022).
Google Scholar
Rosales, S. M. et al. Bacterial metabolic potential and micro-eukaryotes enriched in stony coral tissue loss disease lesions. Front Mar. Sci. 8, 776859 (2022).
Rosales, S. M., Clark, A. S., Huebner, L. K., Ruzicka, R. R. & Muller, E. M. Rhodobacterales and Rhizobiales are associated with stony coral tissue loss disease and its suspected sources of transmission. Front. Microbiol. 11, 681 (2020).
Google Scholar
Studivan, M. S. et al. Reef sediments can act as a stony coral tissue loss disease vector. Front Mar. Sci. 8, 815698 (2022).
Meyer, J. L. et al. Microbial community shifts associated with the ongoing stony coral tissue loss disease outbreak on the Florida Reef Tract. Front. Microbiol. 10, 2244 (2019).
Google Scholar
Ushijima, B. et al. Disease diagnostics and potential coinfections by Vibrio coralliilyticus during an ongoing coral disease outbreak in Florida. Front. Microbiol. 11, 2682 (2020).
Meiling, S. S. et al. Variable species responses to experimental stony coral tissue loss disease (SCTLD) exposure. Front Mar. Sci. 8, 670829 (2021).
Becker, C. C., Brandt, M., Miller, C. A. & Apprill, A. Microbial bioindicators of stony coral tissue loss disease identified in corals and overlying waters using a rapid field-based sequencing approach. Environ. Microbiol. 24, 1166–1182 (2021).
Google Scholar
Dobbelaere, T., Muller, E. M., Gramer, L. J., Holstein, D. M. & Hanert, E. Coupled epidemio-hydrodynamic modeling to understand the spread of a deadly coral disease in Florida. Front Mar. Sci. 7, 591881 (2020).
Dobbelaere, T. et al. Connecting the dots: Transmission of stony coral tissue loss disease from the Marquesas to the Dry Tortugas. Front Mar. Sci. 9, 778938 (2022).
Muller, E. M., Sartor, C., Alcaraz, N. I. & van Woesik, R. Spatial epidemiology of the stony-coral-tissue-loss disease in Florida. Front Mar. Sci. 7, 00163 (2020).
Sharp, W. C., Shea, C. P., Maxwell, K. E., Muller, E. M. & Hunt, J. H. Evaluating the small-scale epidemiology of the stony-coral-tissue-loss-disease in the middle Florida Keys. PLoS ONE 15, e0241871 (2020).
Google Scholar
Williamson, O. M., Dennison, C. E., O’Neil, K. L. & Baker, A. C. Susceptibility of Caribbean brain coral recruits to stony coral tissue loss disease (SCTLD). Front Mar. Sci. 9, 821165 (2022).
Noonan, K. R. & Childress, M. J. Association of butterflyfishes and stony coral tissue loss disease in the Florida Keys. Coral Reefs 39, 1581–1590 (2020).
Dahlgren, C., Pizarro, V., Sherman, K., Greene, W. & Oliver, J. Spatial and temporal patterns of stony coral tissue loss disease outbreaks in the Bahamas. Front Mar. Sci. 8, 682114 (2021).
Rosenau, N. A. et al. Considering commercial vessels as potential vectors of stony coral tissue loss disease. Front Mar. Sci. 8, 709764 (2021).
Roth, L., Kramer, P., Doyle, E. & O’Sullivan, C. Caribbean SCTLD Dashboard. Available www.agrra.org. Accessed 06 Mar 2021. (2020).
Brandt, M. E. et al. The emergence and initial impact of stony coral tissue loss disease (SCTLD) in the United States Virgin Islands. Front Mar. Sci. 8, 715329 (2021).
Bailey, S. A. et al. Trends in the detection of aquatic non-indigenous species across global marine, estuarine and freshwater ecosystems: A 50-year perspective. Divers. Distrib. 26, 1780–1797 (2020).
Google Scholar
Hewitt, C. L., Gollasch, S. & Minchin, D. The vessel as a vector: Biofouling, ballast water and sediments. In Biological Invasions in Marine Ecosystems Vol. 204 (eds Rilov, G. & Crooks, J. A.) 117–131 (Springer, 2009).
Zabin, C. J. et al. Small boats provide connectivity for nonindigenous marine species between a highly invaded international port and nearby coastal harbors. Manag. Biol. Invas. 5, 97–112 (2014).
Ashton, G. V., Zabin, C. J., Davidson, I. C. & Ruiz, G. M. Recreational boats routinely transfer organisms and promote marine bioinvasions. Biol. Invas. 24, 1083–1096 (2022).
Drake, L. A., Doblin, M. A. & Dobbs, F. C. Potential microbial bioinvasions via ships’ ballast water, sediment, and biofilm. Mar. Pollut. Bull. 55, 333–341 (2007).
Google Scholar
Pagenkopp Lohan, K. M., Fleischer, R. C., Carney, K. J., Holzer, K. K. & Ruiz, G. M. Amplicon-based pyrosequencing reveals high diversity of protistan parasites in ships’ ballast water: Implications for biogeography and infectious diseases. Microb. Ecol. 71, 530–542 (2015).
Google Scholar
Ruiz, G. M. et al. Global spread of microorganisms by ships. Nature 408, 49–50 (2000).
Google Scholar
Hwang, J., Park, S. Y., Lee, S. & Lee, T. K. High diversity and potential translocation of DNA viruses in ballast water. Mar. Pollut. Bull. 137, 449–455 (2018).
Google Scholar
Shikuma, N. J. & Hadfield, M. G. Marine biofilms on submerged surfaces are a reservoir for Escherichia coli and Vibrio cholerae. Biofouling 26, 39–46 (2009).
Aguirre-Macedo, M. L. et al. Ballast water as a vector of coral pathogens in the Gulf of Mexico: The case of the Cayo Arcas coral reef. Mar. Pollut. Bull. 56, 1570–1577 (2008).
Google Scholar
Bruno, J. F. The coral disease triangle. Nat. Clim. Chang. 5, 302–303 (2015).
Google Scholar
Lakshmi, E., Priya, M. & Achari, V. S. An overview on the treatment of ballast water in ships. Ocean Coast. Manag. 199, 105296 (2021).
Petersen, N. B., Madsen, T., Glaring, M. A., Dobbs, F. C. & Jørgensen, N. O. G. Ballast water treatment and bacteria: Analysis of bacterial activity and diversity after treatment of simulated ballast water by electrochlorination and UV exposure. Sci. Total Environ. 648, 408–421 (2019).
Google Scholar
Romero-Martínez, L., Moreno-Andrés, J., Acevedo-Merino, A. & Nebot, E. Evaluation of ultraviolet disinfection of microalgae by growth modeling: Application to ballast water treatment. J. Appl. Phycol. 28, 2831–2842 (2016).
First, M. R. et al. Stratification of living organisms in ballast tanks: How do organism concentrations vary as ballast water is discharged?. Environ. Sci. Technol. 47, 4442–4448 (2013).
Google Scholar
Drake, L. A. et al. Microbial ecology of ballast water during a transoceanic voyage and the effects of open-ocean exchange. Mar. Ecol. Prog. Ser. 233, 13–20 (2002).
Google Scholar
Khandeparker, L., Kuchi, N., Desai, D. V. & Anil, A. C. Changes in the ballast water tank bacterial community during a trans-sea voyage: Elucidation through next generation DNA sequencing. J. Environ. Manag. 273, 111018 (2020).
Ruiz, G. M., Lorda, J., Arnwine, A. & Lion, K. Shipping patterns associated with the Panama Canal: Effects on biotic exchange? In Bridging Divides Vol. 83 (eds Gollasch, S. et al.) 113–126 (Springer, 2006).
Pagano, A., Wang, G., Sánchez, O., Ungo, R. & Tapiero, E. The impact of the Panama Canal expansion on Panama’s maritime cluster. Marit. Policy Manag. 43, 164–178 (2016).
Muirhead, J. R., Minton, M. S., Miller, W. A. & Ruiz, G. M. Projected effects of the Panama Canal expansion on shipping traffic and biological invasions. Divers. Distrib. 21, 75–87 (2015).
Ros, M. et al. The Panama Canal and the transoceanic dispersal of marine invertebrates: Evaluation of the introduced amphipod Paracaprella pusilla Mayer, 1890 in the Pacific Ocean. Mar. Environ. Res. 99, 204–211 (2014).
Google Scholar
Stehouwer, P. P., Buma, A. & Peperzak, L. A comparison of six different ballast water treatment systems based on UV radiation, electrochlorination and chlorine dioxide. Environ. Technol. 36, 2094–2104 (2015).
Google Scholar
Wu, Y., Li, Z., Du, W. & Gao, K. Physiological response of marine centric diatoms to ultraviolet radiation, with special reference to cell size. J. Photochem. Photobiol., B 153, 1–6 (2015).
Google Scholar
Aguirre, L. E. et al. Diatom frustules protect DNA from ultraviolet light. Sci. Rep. 8, 5138 (2018).
Google Scholar
First, M. R. & Drake, L. A. Life after treatment: Detecting living microorganisms following exposure to UV light and chlorine dioxide. J. Appl. Phycol. 26, 227–235 (2014).
Google Scholar
Liebich, V., Stehouwer, P. P. & Veldhuis, M. Re-growth of potential invasive phytoplankton following UV-based ballast water treatment. Aquat. Invas. 7, 29–36 (2012).
Hess-Erga, O. K., Moreno-Andrés, J., Enger, Ø. & Vadstein, O. Microorganisms in ballast water: Disinfection, community dynamics, and implications for management. Sci. Total Environ. 657, 704–716 (2019).
Google Scholar
Endresen, Ø., Lee Behrens, H., Brynestad, S., Bjørn Andersen, A. & Skjong, R. Challenges in global ballast water management. Mar. Pollut. Bull. 48, 615–623 (2004).
Google Scholar
Vorkapić, A., Radonja, R. & Zec, D. Cost efficiency of ballast water treatment systems based on ultraviolet irradiation and electrochlorination. Promet Traffic Transp. 30, 343–348 (2018).
King, D., Hagan, P., Riggio, M. & Wright, D. Preview of global ballast water treatment markets. J. Mar. Eng. Technol. 11, 3–15 (2012).
Wang, Z., Saebi, M., Corbett, J. J., Grey, E. K. & Curasi, S. R. Integrated biological risk and cost model analysis supports a geopolitical shift in ballast water management. Environ. Sci. Technol. 55, 12791–12800 (2021).
Google Scholar
Moreno-Andrés, J. & Peperzak, L. Operational and environmental factors affecting disinfection byproducts formation in ballast water treatment systems. Chemosphere 232, 496–505 (2019).
Google Scholar
David, M., Linders, J., Gollasch, S. & David, J. Is the aquatic environment sufficiently protected from chemicals discharged with treated ballast water from vessels worldwide? A decadal environmental perspective and risk assessment. Chemosphere 207, 590–600 (2018).
Google Scholar
U.S. Environmental Protection Agency. Generic protocol for the verification of ballast water treatment technology, version 5.1. Report number EPA/600/R-10/146. Washington, D.C. 157 (2010).
Evans, J. S., Paul, V. J., Ushijima, B. & Kellogg, C. A. Combining tangential flow filtration and size fractionation of mesocosm water as a method for the investigation of waterborne coral diseases. Biol. Methods Protocols 7, bpac007 (2022).
Fujimoto, M. et al. Application of Ion Torrent sequencing to the assessment of the effect of alkali ballast water treatment on microbial community diversity. PLoS ONE 9, e107534 (2014).
Google Scholar
United States Coast Guard. Ballast Water Best Management Practices to Reduce the Likelihood of Transporting Pathogens That May Spread Stony Coral Tissue Loss Disease. Marine Safety Information Bulletin 07–19. Washington, D.C. 2 (2019).
Bolton, J. R. & Linden, K. G. Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments. J. Environ. Eng. 129, 209–215 (2003).
Google Scholar
Enochs, I. C. et al. The influence of diel carbonate chemistry fluctuations on the calcification rate of Acropora cervicornis under present day and future acidification conditions. J. Exp. Mar. Biol. Ecol. 506, 135–143 (2018).
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Preprint at https://www.r-project.org/ (2019).
Therneau, T. M. survival: A package for survival analysis in R. R package version 3.2–13. (2021).
Kassambara, A., Kosinski, M. & Biecek, P. survminer: Drawing survival curves using “ggplot2”. R package version 0.4.9. (2021).
Bakalar, G. Review of interdisciplinary devices for detecting the quality of ship ballast water. Springerplus 3, 468 (2014).
Google Scholar
Water Environmental Federation & American Public Health Association. Standard methods for the examination of water and wastewater. Washington, D.C. 21 (2005).
Steinberg, M. K., Lemieux, E. J. & Drake, L. A. Determining the viability of marine protists using a combination of vital, fluorescent stains. Mar. Biol. 158, 1431–1437 (2011).
Oksanen, J. et al. vegan: Community ecology package. R package version 2.0–10. (2015).
Martinez Arbizu, P. pairwiseAdonis: Pairwise multilevel comparison using adonis. R package version 0.4. (2020).
Studivan, MS. Mstudiva/SCTLD-ballast-transmission: Stony coral tissue loss disease ballast transmission and treatment (Version 1.0), Zenodo, https://doi.org/10.5281/zenodo.6561517 (2022).
Source: Ecology - nature.com