Gardner TA, Cote IM, Gill JA, Grant A, Watkinson AR. Long-term region-wide declines in Caribbean corals. Science. 2003;301:958–60.
Google Scholar
Knowlton N. The future of coral reefs. Proc Natl Acad Sci USA. 2001;98:5419–25.
Google Scholar
Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, et al. Impacts of biodiversity loss on ocean ecosystem services. Science. 2006;314:787–90.
Google Scholar
Dudgeon SR, Aronson RB, Bruno JF, Precht WF. Phase shifts and stable states on coral reefs. Mar Ecol Prog Ser. 2010;413:201–16.
Bell JJ, Davy SK, Jones T, Taylor MW, Webster NS. Could some coral reefs become sponge reefs as our climate changes? Glob Climate Change. 2013;19:2613–24.
McMurray SE, Henkel TP, Pawlik JR. Demographics of increasing populations of the giant barrel sponge Xestospongia muta in the Florida Keys. Ecology. 2010;91:560–70.
Google Scholar
Bell JJ. The functional roles of marine sponges. Est Coast Shelf Sci. 2008;79:341–53.
Lesser MP, Slattery M. Will coral reef sponges be winners in the Anthropocene? Glob Change Biol. 2020;26:3202–11.
Pankey MS, Plachetzki DC, Macartney KJ, Gastaldi M, Slattery M, Gochfeld DJ, et al. Co-phylogeny and convergence shape holobiont evolution in sponge-microbe symbioses. Nat Ecol Evol. 2022;6:750–62.
Lesser MP, Slattery M, Mobley CD. Biodiversity and functional ecology of mesophotic coral reefs. Ann Rev Ecol Syst. 2018;49:49–71.
Diaz MC, Rützler K. Sponges: an essential component of Caribbean coral reefs. Bull Mar Sci. 2001;69:535–46.
Wulff JL. Ecological interactions and the distribution, abundance, and diversity of sponges. Adv Mar Biol. 2012;61:273–344.
Google Scholar
Lesser MP. Benthic-pelagic coupling on coral reefs: feeding and growth of Caribbean sponges. J Exp Mar Biol Ecol. 2006;328:277–88.
Perea-Blazquez A, Davy SK, Bell JJ. Estimates of particulate organic carbon flowing from the pelagic environment to the benthos through sponge assemblages. PLoS One. 2012;7:e29569.
Google Scholar
Lesser MP, Slattery M. Ecology of Caribbean sponges: are top-down or bottom-up processes more important? PLoS One. 2013;8:e79799.
Google Scholar
Pawlik JR. The chemical ecology of sponges on Caribbean reefs: natural products shape natural systems. BioScience. 2011;61:888–98.
Slattery M, Gochfeld DJ. Chemical interactions among marine competitors, and host-pathogens. In: Fattorusso, E, Gerwick, WH, Taglialatela-Scafati, O (eds). Handbook of Marine Natural Products. Springer, 2012. pp. 824–59.
Thacker RW, Freeman CJ. Sponge-microbe symbioses: recent advances and new directions. Adv Mar Biol. 2012;62:57–112.
Google Scholar
Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Biol Rev. 2007;71:295–347.
Google Scholar
Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N, et al. Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J. 2012;6:564–76.
Google Scholar
Gloeckner V, Wehrl M, Moitinho-Silva L, Gernert C, Schupp P, Pawlik JR, et al. The HMA-LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. Biol Bull. 2014;227:78–88.
Google Scholar
Hentschel U, Fieseler L, Wehrl M, Gernert C, Steinert M, Hacker J, et al. Microbial diversity of marine sponges. Prog Mol Subcell Biol. 2003;37:59–88.
Google Scholar
Fiore CL, Jarett JK, Olson ND, Lesser MP. Nitrogen fixation and nitrogen transformation in marine symbioses. Trends Microbiol. 2010;18:455–63.
Google Scholar
Zhang F, Jonas L, Lin H, Hill RT. Microbially mediated nutrient cycles in marine sponges. FEMS Microbiol Ecol. 2019;95:115.
Schläppy M-L, Schöttner SI, Lavik G, Kuypers MMM, de Beer D, Hoffmann F. Evidence of nitrification and denitrification in high and low microbial abundance sponges. Mar Biol. 2010;157:593–602.
Google Scholar
Giles EC, Kamke J, Moitinho-Silva L, Taylor MW, Hentschel U, Ravasi T, et al. Bacterial community profiles in low microbial abundance sponges. FEMS Microbiol Ecol. 2013;83:232–41.
Google Scholar
Weisz JB, Lindquist N, Martens CS. Do associated microbial abundances impact marine demosponge pumping rates and tissue densities. Oecologia. 2008;155:367–76.
Google Scholar
de Goeij JM, van Oevelen D, Vermiej MJA, Osinga R, Middelburg JJ, de Goeij AFPM, et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science. 2013;342:108–10.
Google Scholar
de Goeij JM, Lesser MP, Pawlik JR. Nutrient fluxes and ecological functions of coral reef sponges in a changing ocean. In: Carballo, J, Bell, J eds. Climate Change, Ocean Acidification and Sponges. Springer, 2017. pp 373–410.
Tanaka Y, Miyajima T, Wtanabe A, Nadaoka K, Yamamoto T, Ogawa H. Distribution of dissolved organic carbon and nitrogen in a coral reef. Coral Reefs. 2011;30:533–41.
Lesser MP, Slattery M, Laverick JH, Macartney KJ, Bridge TC. Global community breaks at 61 m on mesophotic coral reefs. Global Ecol Biogeogr. 2019;28:1403–16.
Lønborg C, Álvarez-Salgado XA, Duggan S, Carreira C. Organic matter bioavailability in tropical coastal waters: The Great Barrier Reef. Limnol Oceanogr. 2018;63:1015–35.
Macartney KJ, Abraham AC, Slattery M, Lesser MP. Growth and feeding in the sponge Agelas tubulata from shallow to mesophotic depths on Grand Cayman Island. Ecosphere. 2021;12:e03764.
Ribes M, Coma R, Atkinson MJ, Kinzie RA. Particle removal by coral reef communities: picoplankton is a major source of nitrogen. Mar Ecol Prog Ser. 2003;257:13–23.
Ribes M, Coma R, Atkinson MJ, Kinzie RA. Sponges and ascidians control removal of particulate organic nitrogen from coral reef water. Limnol Oceanogr. 2005;50:1480–9.
Google Scholar
Maldonado M, Ribes M, van Duyl FC. Nutrient fluxes through sponges: biology, budgets, and ecological implications. Adv Mar Biol. 2012;62:113–82.
Google Scholar
Seutin G, White BN, Boag PT. Preservation of avian blood and tissue samples for DNA analyses. Can J Zool. 1991;69:82–90.
Google Scholar
Abraham AC, Gochfeld DJ, Macartney K, Mellow A, Lesser MP, Slattery M. Biochemical variability in sponges across the Caribbean basin. Invertebr Biol. 2021;140:e12341.
Sunagawa S, Woodley CM, Medina M. Threatened corals provide underexplored microbial habitats. PLoS One. 2010;5:e9554.
Google Scholar
Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.
Google Scholar
Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol. 2015;75:129–37.
Simion P, Phillippe H, Baurain D, Jager M, Richter RJ, Di Franco A, et al. A Large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Curr Biol. 2017;27:958–67.
Google Scholar
Katoh K, Misawa K, Kuma KI, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.
Google Scholar
Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, et al. vegan: Community Ecology Package. R package version 2.5-5. https://CRAN.R-project.org/package=vegan. Released May, 2019.
Pinheiro J, Bates D, DebRoy S, Sarkar D, EISPACK Authors, Heisterkamp S, et al. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-155. https://svn.r-project.org/R-packages/trunk/nlme/. Released Jan, 2022.
Kindt R, Coe R. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre, ICRAF, 2005. https://www.worldagroforestry.org/publication/tree-diversity-analysis-manual-and-software-common-statistical-methods-ecological-and.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Google Scholar
Westbrook A, Ramsdell J, Schuelke T, Normington L, Bergeron RD, Thomas WK, et al. PALADIN: protein alignment for functional profiling whole metagenome shotgun data. Bioinformatics. 2017;33:1473–8.
Google Scholar
Robinson MD, McCarthy DG, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Google Scholar
Li D, Luo R, Liu C-M, Leung C-M, Ting H-F, Sadakane K, et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11.
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–60.
Google Scholar
Blin K, Shaw S, Kautsar SA, Medema MH, Weber T. The antiSMASH database version 3: increased taxonomic coverage and new query features for modular enzymes. Nucleic Acids Res. 2009;49:D639–43.
Conte-Jerpe IE, Thompson PD, Wong CWM, Oliveira NL, Duprey NN, Moynihan MA, et al. Trophic strategy and bleaching resistance in reef-building corals. Sci Adv. 2020;6:eaaz5443.
Jackson AL, Inger R, Parnell AC, Bearhop S. Comparing isotopic niche widths among and within communities: SIBER-Stable Isotope Bayesian Ellipses. Anim Ecol. 2011;80:595–602.
Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C, Astudillo-Garcia C, et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat Comm. 2016;7:11870.
Google Scholar
Erwin PM, Coma R, López-Sendino P, Serrano E, Ribes M. Stable symbionts across the HMA-LMA dichotomy: low seasonal and inter-annual variation in sponge-associated bacteria from taxonomically diverse hosts. FEMS Microbiol Ecol. 2015;91:fiv115.
Google Scholar
Moitinho-Silva L, Steinert G, Nielsen S, Hardoim CCP, Wu Y-C, McCormack GP. Predicting the HMA-LMA status in marine sponges by machine learning. Front Microbiol. 2017;8:752.
Google Scholar
Campana S, Demey C, Busch K, Hentschel U, Muyzer G, de Goeij J. Marine sponges maintain stable bacterial communities between reef sites with different coral to algae cover ratios. FEMS Microbiol Ecol. 2021;97:fiab115.
Google Scholar
Freeman CJ, Thacker RW. Complex interactions between marine sponges and their symbiotic microbial communities. Limnol Oceanogr. 2011;56:1577–86.
Siegel A, Kamke J, Hochmuth T, Piel J, Richter M, Liang C, et al. Single-cell genomic reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME J. 2011;5:61–70.
Bayer K, Jahn MT, Slaby BM, Moitinho-Silva L, Hentschel U. Marine sponges as Chloroflexi hot spots: genomic insights and high resolution visualization of an abundant and diverse symbiotic clade. mSystems. 2018;3:e00150–18.
Google Scholar
Fan L, Reynolds D, Liu M, Thomas T. Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proc Natl Acad Sci USA. 2012;109:1878–87.
Ribes M, Jiménez E, Yahel G, López-Sendino P, Diez B, Massana R, et al. Functional convergence of microbes associated with temperate marine sponges. Environ Microbiol. 2012;14:1224–39.
Google Scholar
Thomas T, Rusch D, DeMaere MZ, Yung PY, Lewis M, Halpern A, et al. Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J. 2010;4:1557–67.
Google Scholar
Fiore CL, Labrie M, Jarett JK, Lesser MP. Transcriptional activity of the giant barrel sponge, Xestospongia muta holobiont: molecular evidence for metabolic interchange. Front Microbiol. 2015;6:364.
Google Scholar
Engel S, Pawlik JR. Allelopathic activities of sponge extracts. Mar Ecol Prog Ser. 2000;207:273–82.
Gochfeld DJ, Kamel HN, Olson JB, Thacker RW. Trade-offs in defensive metabolite production but not ecological function in healthy and diseased sponges. J Chem Ecol. 2012;38:451–62.
Google Scholar
van Duyl FC, Mueller B, Meesters EH. Spatio-temporal variation in stable isotopic signatures (δ13C and δ15N) of sponges on the Saba Bank. PeerJ. 2018;6:e5460.
Google Scholar
Fiore CL, Baker DM, Lesser MP. Nitrogen biogeochemistry in the Caribbean sponge, Xestospongia muta: a source or sink of dissolved inorganic nitrogen? PLoS One. 2013;8:e72961.
Google Scholar
Hudspith M, de Goeij JM, Streekstra M, Kornder NA, Bougoure J, Guagliardo P, et al. Harnessing solar power: photoautotrophy supplements the diet of a low-light dwelling sponge. ISME J. 2022; https://doi.org/10.1038/s41396-022-01254-3.
Shih JL, Selph KE, Wall CB, Wallsgrove NJ, Lesser MP, Popp BN. Trophic ecology of the tropical Pacific sponge Mycale gradis inferred from amino acid compound-specific isotopic analyses. Microb Ecol. 2020;79:495–510.
Google Scholar
Macartney KJ, Slattery M, Lesser MP. Trophic ecology of Caribbean sponges in the mesophotic zone. Limnol Oceanogr. 2021;66:1113–24.
Google Scholar
Southwell MW, Popp BN, Martens CS. Nitrification controls on fluxes and isotopic composition of nitrate from Florida Keys sponges. Mar Chem. 2008;108:96–108.
Google Scholar
Lamb K, Swart PK. The carbon and nitrogen isotopic values of particulate organic material from the Florida Keys: a temporal and spatial study. Coral Reefs. 2008;27:351–62.
Ferrier-Pagès C, Leal MG. Stable isotopes as tracers of trophic interactions in marine mutualistic symbioses. Ecol Evol. 2019;9:723–40.
Google Scholar
McMurray SE, Stubler AD, Erwin PM, Finelli CM, Pawlik JR. A test of the sponge-loop hypothesis for emergent Caribbean reef sponges. Mar Ecol Prog Ser. 2018;588:1–14.
Google Scholar
Freeman CJ, Easson CG, Baker DM. Metabolic diversity and niche structure in sponges from the Miskito Cays, Honduras. PeerJ. 2014;2:e695.
Google Scholar
Freeman CJ, Easson CG, Matterson KO, Thacker RW, Baker DM, Paul VJ. Microbial symbionts and ecological divergence of Caribbean sponges: a new perspective on an ancient association. ISME J. 2020;14:1571–83.
Google Scholar
Poppell E, Weisz J, Spicer L, Massaro A, Hill A, Hill M. Sponge heterotrophic capacity and bacterial community structure in high‐and low‐microbial abundance sponges. Mar Ecol. 2014;35:414–24.
Morganti TM, Ribes M, Yahel G, Coma R. Size is the major determinant of pumping rates in marine sponges. Front Physiol. 2019;10:1474.
Google Scholar
Rix L, Ribes M, Coma R, Jahn MT, de Goeij JM, van Oevelen D, et al. Heterotrophy in the earliest gut: a single-cell view of heterotrophic carbon and nitrogen assimilation in sponge-microbe symbioses. ISME J. 2020;14:2554–67.
Google Scholar
O’Brien PA, Tan S, Yang C, Frade PR, Andreakis N, Smith HA, et al. Diverse coral reef invertebrates exhibit patterns of phylosymbiosis. ISME J. 2020;14:2211–22.
Google Scholar
Erwin PM, Thacker RW. Incidence and identity of photosynthetic symbionts in Caribbean coral reef sponge assemblages. J Mar Biol Assoc UK. 2007;87:1683–92.
Google Scholar
Palumbi SR. Tactics of acclimation: morphological changes of sponges in an unpredictable environment. Science. 1984;225:1478–80.
Google Scholar
Slattery M, Gochfeld DJ, Diaz MC, Thacker RW, Lesser MP. Variability in chemical defense across a shallow to mesophotic depth gradient in the Caribbean sponge Plakortis angulospiculatus. Coral Reefs. 2016;35:11–22.
Morganti T, Coma R, Yahel G, Ribes M. Trophic niche separation that facilitates co‐existence of high and low microbial abundance sponges is revealed by in situ study of carbon and nitrogen fluxes. Limnol Oceanogr. 2017;62:1963–83.
Google Scholar
Maldonado M. Sponge waste that fuels marine oligotrophic food webs: a re-assessment of its origin and nature. Mar Ecol. 2016;37:477–91.
Source: Ecology - nature.com