Paerl, H. W. Mitigating toxic planktonic cyanobacterial blooms in aquatic ecosystems facing increasing anthropogenic and climatic pressures. Toxins. 10, 1–16 (2018).
Harke, M. J. et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium Microcystis spp. Harmful Algae 54, 4–20. https://doi.org/10.1016/j.hal.2015.12.007 (2016).
Google Scholar
Paerl, H. W. & Barnard, M. A. Mitigating the global expansion of harmful cyanobacterial blooms: Moving targets in a human- and climatically-altered world. Harmful Algae 96, 101845. https://doi.org/10.1016/j.hal.2020.101845 (2020).
Google Scholar
Paerl, H. W. Mitigating harmful cyanobacterial blooms in a human- and climatically-impacted world. Life. 4, 988–1012 (2014).
Google Scholar
Burford, M. A. et al. Perspective: Advancing the research agenda for improving understanding of cyanobacteria in a future of global change. Harmful Algae 91, 101601. https://doi.org/10.1016/j.hal.2019.04.004 (2020).
Google Scholar
Havens, K. E., James, R. T., East, T. L. & Smith, V. H. N: P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution. Environ. Pollut. 122, 379–390 (2003).
Google Scholar
Bernard, C. Cyanobacteria and cyanotoxins. Rev. Franç. Lab. 2014, 53–68 (2014).
Paerl, H. W. & Otten, T. G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 65, 995–1010 (2013).
Google Scholar
Dolman, A. M. et al. Cyanobacteria and cyanotoxins: The influence of nitrogen versus phosphorus. PLoS ONE 7, 38575 (2012).
Svirčev, Z. et al. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch. Toxicol. https://doi.org/10.1007/s00204-019-02524-4 (2019).
Google Scholar
Massey, I. Y. & Yang, F. A mini review on microcystins and bacterial degradation. Toxins 12, 268 (2020).
Google Scholar
Paerl, H. W. et al. Mitigating eutrophication and toxic cyanobacterial blooms in large lakes: The evolution of a dual nutrient (N and P) reduction paradigm. Hydrobiologia 847, 4359–4375. https://doi.org/10.1007/s10750-019-04087-y (2020).
Google Scholar
Sapp, M. et al. Species-specific bacterial communities in the phycosphere of microalgae?. Microb. Ecol. 53, 683–699 (2007).
Google Scholar
Cai, H., Jiang, H., Krumholz, L. R. & Yang, Z. Bacterial community composition of size-fractioned aggregates within the phycosphere of cyanobacterial blooms in a eutrophic freshwater lake. PLoS ONE 9, 102879 (2014).
Google Scholar
Grant, M. A. A., Kazamia, E., Cicuta, P. & Smith, A. G. Direct exchange of vitamin B 12 is demonstrated by modelling the growth dynamics of algal-bacterial cocultures. ISME J. Nat. Publ. Group 8, 1418–1427 (2014).
Google Scholar
Shi, L., Cai, Y., Kong, F. & Yu, Y. Specific association between bacteria and buoyant Microcystis colonies compared with other bulk bacterial communities in the eutrophic Lake Taihu, China. Environ. Microbiol. Rep. 4, 669–678 (2012).
Google Scholar
Brunberg, A. K. Contribution of bacteria in the mucilage of Microcystis spp (Cyanobacteria) to benthic and pelagic bacterial production in a hypereutrophic lake. FEMS Microbiol. Ecol. 29, 13–22 (1999).
Google Scholar
Shao, K. et al. The responses of the taxa composition of particle-attached bacterial community to the decomposition of Microcystis blooms. Sci. Total. Environ. 488–489, 236–242. https://doi.org/10.1016/j.scitotenv.2014.04.101 (2014).
Google Scholar
Jankowiak, J. G. & Gobler, C. J. The composition and function of microbiomes within microcystis colonies are significantly different than native bacterial assemblages in two North American lakes. Front. Microbiol. 11, 1–26 (2020).
Bauer, A. & Forchhammer, K. Bacterial predation on cyanobacteria. Microb. Physiol. 99, 108 (2021).
Ndlela, L. L., Oberholster, P. J., Van Wyk, J. H. & Cheng, P. H. Bacteria as biological control agents of freshwater cyanobacteria: Is it feasible beyond the laboratory?. Appl. Microbiol. Biotechnol. 102, 9911–9923 (2018).
Google Scholar
Yang, C. et al. Distinct network interactions in particle-associated and free-living bacterial communities during a Microcystis aeruginosa bloom in a plateau lake. Front. Microbiol. 8, 1–15 (2017).
Xu, H. et al. Contrasting network features between free-living and particle-attached bacterial communities in Taihu Lake. Microb. Ecol. 76, 303–313 (2018).
Google Scholar
Liu, M. et al. Community dynamics of free-living and particle-attached bacteria following a reservoir Microcystis bloom. Sci. Total Environ. 660, 501–511. https://doi.org/10.1016/j.scitotenv.2018.12.414 (2019).
Google Scholar
Parveen, B. et al. Bacterial communities associated with Microcystis colonies differ from free-living communities living in the same ecosystem. Environ. Microbiol. Rep. 5, 716–724 (2013).
Google Scholar
Louati, I. et al. Structural diversity of bacterial communities associated with bloom-forming freshwater cyanobacteria differs according to the cyanobacterial genus. PLoS ONE 10, 0140614 (2015).
Zwirglmaier, K., Keiz, K., Engel, M., Geist, J. & Raeder, U. Seasonal and spatial patterns of microbial diversity along a trophic gradient in the interconnected lakes of the Osterseen Lake District, Bavaria. Front. Microbiol. 6, 1–18 (2015).
Scherer, P. I. et al. Temporal dynamics of the microbial community composition with a focus on toxic cyanobacteria and toxin presence during harmful algal blooms in two South German lakes. Front. Microbiol. 8, 1–17 (2017).
Kokocinski, M., Dziga, D., Antosiak, A. & Soininen, J. Are bacterio- and phytoplankton community compositions related in lakes differing in their cyanobacteria contribution and physico-chemical properties?. Genes 12, 855 (2021).
Google Scholar
Dziga, D. et al. Correlation between specific groups of heterotrophic bacteria and microcystin biodegradation in freshwater bodies of central Europe. FEMS Microbiol. Ecol. https://doi.org/10.1111/j.1574-6941.1999.tb00594.x (2019).
Google Scholar
Jurczak, T. et al. Elimination of microcystins by water treatment processes: Examples from Sulejow Reservoir, Poland. Water Res. 39, 2394–2406 (2005).
Google Scholar
Mankiewicz-Boczek, J. et al. Detection and monitoring toxigenicity of cyanobacteria by application of molecular methods. Environ Toxicol. 21, 380–387 (2006).
Google Scholar
Rajaniemi-Wacklin, P. et al. Correspondence between phylogeny and morphology of Snowella spp. and Woronichinia naegeliana, cyanobacteria commonly occurring in lakes. J. Phycol. 42, 226–232 (2006).
DrobacBacković, D. et al. Cyanobacteria, cyanotoxins, and their histopathological effects on fish tissues in Fehérvárcsurgó reservoir Hungary. Environ. Monit. Assess. https://doi.org/10.1007/s10661-021-09324-3 (2021).
Google Scholar
Kallscheuer, N. et al. Analysis of bacterial communities in a municipal duck pond during a phytoplankton bloom and isolation of Anatilimnocola aggregata gen. nov., sp. Nov., Lacipirellula limnantheis sp. Nov. and Urbifossiella limnaea gen. nov. sp. nov. belonging to the phylum. Environ. Microbiol. 23, 1379–1396 (2021).
Google Scholar
Davis, T. W. et al. Effects of nitrogenous compounds and phosphorus on the growth of toxic and non-toxic strains of Microcystis during cyanobacterial blooms. Aquat. Microb. Ecol. 61, 149–162 (2010).
Gobler, C. J., Davis, T. W., Coyne, K. J. & Boyer, G. L. Interactive influences of nutrient loading, zooplankton grazing, and microcystin synthetase gene expression on cyanobacterial bloom dynamics in a eutrophic New York lake. Harmful Algae 6, 119–133 (2007).
Google Scholar
Mankiewicz-Boczek, J. et al. Cyanophages infection of microcystis bloom in lowland dam reservoir of Sulejów, Poland. Microb. Ecol. 71, 315–325 (2016).
Google Scholar
Davis, T. W., Berry, D. L., Boyer, G. L. & Gobler, C. J. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8, 715–725 (2009).
Google Scholar
Yoshida, M., Yoshida, T., Takashima, Y., Hosoda, N. & Hiroishi, S. Dynamics of microcystin-producing and non-microcystin-producing Microcystis populations is correlated with nitrate concentration in a Japanese lake. FEMS Microbiol. Lett. 266, 49–53 (2007).
Google Scholar
Sezenna, M. L. Proteobacteria: Phylogeny, Metabolic Diversity and Ecological Effects (Nova Science Publishers, Inc., 2011).
Rilling, J. I., Acuña, J. J., Sadowsky, M. J. & Jorquera, M. A. Putative nitrogen-fixing bacteria associated with the rhizosphere and root endosphere of wheat plants grown in an andisol from southern Chile. Front. Microbiol. 9, 1–13 (2018).
Lukumbuzya, M. et al. A refined set of rRNA-targeted oligonucleotide probes for in situ detection and quantification of ammonia-oxidizing bacteria. Water Res. 186, 116375 (2020).
Prosser, J. I., Head, I. M. & Stein, L. Y. The family Nitrosomonadaceae. In The Prokaryotes: Alphaproteobacteria and Betaproteobacteria (eds Rosenberg, E. et al.) 901–918 (Springer, 2014). https://doi.org/10.1007/978-3-642-30197-1_372.
Google Scholar
Jia, L., Jiang, B., Huang, F. & Hu, X. Nitrogen removal mechanism and microbial community changes of bioaugmentation subsurface wastewater infiltration system. Bioresour. Technol. 294, 122140. https://doi.org/10.1016/j.biortech.2019.122140 (2019).
Google Scholar
Daft, M. J. & Stewart, W. D. P. Bacterial pathogens of freshwater blue-green algae. New Phytol. 70, 819–829 (1971).
Chun, S. J. et al. Network analysis reveals succession of Microcystis genotypes accompanying distinctive microbial modules with recurrent patterns. Water Res. 170, 115326. https://doi.org/10.1016/j.watres.2019.115326 (2020).
Google Scholar
Parulekar, N. N. et al. Characterization of bacterial community associated with phytoplankton bloom in a eutrophic lake in South Norway using 16S rRNA gene amplicon sequence analysis. PLoS ONE 12, 1–22 (2017).
Guedes, I. A. et al. Close link between harmful cyanobacterial dominance and associated bacterioplankton in a tropical eutrophic reservoir. Front. Microbiol. 9, 424 (2018).
Google Scholar
Allgaier, M. & Grossart, H. P. Seasonal dynamics and phylogenetic diversity of free-living and particle-associated bacterial communities in four lakes in northeastern Germany. Aquat. Microb. Ecol. 45, 115–128 (2006).
Chen, S. et al. Disentangling the drivers of Microcystis decomposition: Metabolic profile and co-occurrence of bacterial community. Sci. Total Environ. 739, 140062. https://doi.org/10.1016/j.scitotenv.2020.140062 (2020).
Google Scholar
Leflaive, J. & Ten-Hage, L. Algal and cyanobacterial secondary metabolites in freshwaters: A comparison of allelopathic compounds and toxins. Freshw. Biol. 52, 199–214 (2007).
Google Scholar
Song, H. et al. Biological and chemical factors driving the temporal distribution of cyanobacteria and heterotrophic bacteria in a eutrophic lake (West Lake, China). Appl. Microbiol. Biotechnol. 101, 1685–1696. https://doi.org/10.1007/s00253-016-7968-8 (2017).
Google Scholar
Bagatini, I. L. et al. Host-specificity and dynamics in bacterial communities associated with bloom-forming freshwater phytoplankton. PLoS ONE 9, 85957 (2014).
Google Scholar
Kohler, E. et al. Biodegradation of microcystins during gravity-driven membrane (GDM) ultrafiltration. PLoS ONE 9, 111794 (2014).
Google Scholar
Wu, X. et al. Culturing of “unculturable” subsurface microbes: Natural organic carbon source fuels the growth of diverse and distinct bacteria from groundwater. Front. Microbiol. 11, 1–10 (2020).
Google Scholar
Morotomi, M., Nagai, F. & Watanabe, Y. Parasutterella secunda sp. no., isolated from human faeces and proposal of Sutterellaceae fam. nov. in the order Burkholderiales. Int. J. Syst. Evol. Microbiol. 61, 637–643 (2011).
Google Scholar
Kiedrzyńska, E. et al. Point sources of nutrient pollution in the lowland river catchment in the context of the baltic Sea eutrophication. Ecol. Eng. 70, 337–348 (2014).
Hwang, W. M., Ko, Y., Kim, J. H. & Kang, K. Ahniella affigens gen Nov, sp. nov., a gammaproteobacterium isolated from sandy soil near a stream. Int. J. Syst. Evol. Microbiol. 68, 2478–2484 (2018).
Google Scholar
Qian, H. et al. Spatial variability of cyanobacteria and heterotrophic bacteria in Lake Taihu (China). Bull. Environ. Contam. Toxicol. 99, 380–384 (2017).
Google Scholar
Humbert, J. F. et al. Comparison of the structure and composition of bacterial communities from temperate and tropical freshwater ecosystems. Environ. Microbiol. 11, 2339–2350 (2009).
Google Scholar
Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D. & Bertilsson, S. A guide to the natural history of freshwater lake Bacteria. Microbiol. Mol. Biol. Rev. 1, 1–10 (2011).
Parveen, B., Mary, I., Vellet, A., Ravet, V. & Debroas, D. Temporal dynamics and phylogenetic diversity of free-living and particle-associated Verrucomicrobia communities in relation to environmental variables in a mesotrophic lake. FEMS Microbiol. Ecol. 83, 189–201 (2013).
Google Scholar
Henson, M. W., Lanclos, V. C., Faircloth, B. C. & Thrash, J. C. Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. ISME J. 12, 1846–1860 (2018).
Google Scholar
Yang, C. et al. The characteristics and algicidal mechanisms of cyanobactericidal bacteria, a review. World J. Microbiol. Biotechnol. 36, 1–10. https://doi.org/10.1007/s11274-020-02965-5 (2020).
Google Scholar
Izydorczyk, K. et al. Influence of abiotic and biotic factors on microcystin content in Microcystis aeruginosa cells in a eutrophic temperate reservoir. J. Plankton Res. 30, 393–400 (2008).
Google Scholar
Mankiewicz-Boczek, J. et al. Bacteria homologus to Aeromonas capable of microcystin degradation. Open Life Sci. 10, 106–116 (2015).
Google Scholar
Jaskulska, A., Font Nájera, A., Czarny, P., Serwecińska, L. & Mankiewicz-boczek, J. Daily dynamic of transcripts abundance of Ma-LMM01-like cyanophages in two lowland European reservoirs. Ecohydrol. Hydrobiol. 21, 543–548 (2021).
Gągała, I. et al. Role of environmental factors and toxic genotypes in the regulation of microcystins-producing cyanobacterial blooms. Microb. Ecol. 67, 465–479 (2014).
Google Scholar
Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, 1–11 (2013).
Illumina. 16S Metagenomic Sequencing Library Preparation. (2013). http://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf.
Frangeul, L. et al. Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium. BMC Genomics 9, 1–20 (2008).
Hammer, Ø., Harper, D. A. T. & Ryan, P. D. Past: Paleontological statistics software package for education and data analysis even a cursory glance at the recent paleontological literature should convince anyone tha. Palaeontol. Electron. 4, 1–9 (2001).
Suzuki, M. T., Taylor, L. T. & DeLong, E. F. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5’-nuclease assays. Appl. Environ. Microbiol. 66, 4605–4614. https://doi.org/10.1128/AEM.66.11.4605-4614.2000 (2000).
Google Scholar
Neilan B. A et al. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis Int J Syst Bacteriol 47(3), 693–697, https://doi.org/10.1099/00207713-47-3-693 (1997).
Source: Ecology - nature.com