in

Crop diversification and parasitic weed abundance: a global meta-analysis

  • Chauhan, B. S. Grand challenges in weed management. Front. Agron. https://doi.org/10.3389/fagro.2019.00003 (2020).

    Article 

    Google Scholar 

  • Oerke, E. C. Crop losses to pests. J. Agric. Sci. 144, 31–43 (2006).

    Google Scholar 

  • Samejima, H. & Sugimoto, Y. Recent research progress in combatting root parasitic weeds. Biotechnol. Biotechnol. Equip. 32(2), 221–240 (2018).

    CAS 

    Google Scholar 

  • Aly, R. Conventional and biotechnological approaches for control of parasitic weeds. In Vitro Cell. Dev. Biol. Plant 43(4), 304–317 (2007).

    Google Scholar 

  • Fernández-Aparicio, M., Delavault, P. & Timko, M. P. Management of infection by parasitic weeds: A review. Plants 9(9), 1184 (2020).

    PubMed Central 

    Google Scholar 

  • Rodenburg, J., Demont, M., Zwart, S. J. & Bastiaans, L. Parasitic weed incidence and related economic losses in rice in Africa. Agric. Ecosyst. Environ. 235, 306–317 (2016).

    Google Scholar 

  • Weisberger, D., Nichols, V. & Liebman, M. Does diversifying crop rotations suppress weeds? A meta-analysis. PLoS One 14(7), e0219847 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ejeta, G. The Striga scourge in Africa: A growing pandemic. In Integrating New Technologies for Striga Control: Towards Ending the Witch-hunt 3–16 (World Scientific, 2007). https://doi.org/10.1142/9789812771506_0001.

    Chapter 

    Google Scholar 

  • Netting, R. M. & Stone, M. P. Agro-diversity on a farming frontier: Kofyar smallholders on the Benue plains of central Nigeria. Africa 66(1), 52–70 (1996).

    Google Scholar 

  • Pimentel, D. et al. Conserving biological diversity in agricultural and forestry systems. Bioscience 42, 354–362 (1992).

    Google Scholar 

  • Khoshbakht, K. & Hammer, K. How many plant species are cultivated?. Genet. Resour. Crop Evol. 55(7), 925–928. https://doi.org/10.1007/s10722-008 (2008).

    Article 

    Google Scholar 

  • Hajjar, R., Jarvis, D. I. & Gemmill-Herren, B. The utility of crop genetic diversity in maintaining ecosystem services. Agric. Ecosyst. Environ. 123(4), 261–270 (2008).

    Google Scholar 

  • He, H. M. et al. Crop diversity and pest management in sustainable agriculture. J. Integr. Agric. 18(9), 1945–1952 (2019).

    Google Scholar 

  • Ofori, F. & Stern, W. R. Cereal–legume intercropping systems. Adv. Agron. 41, 41–90 (1987).

    Google Scholar 

  • Tanveer, M., Anjum, S. A., Hussain, S., Cerdà, A. & Ashraf, U. Relay cropping as a sustainable approach: Problems and opportunities for sustainable crop production. Environ. Sci. Pollut. Res. 24(8), 6973–6988 (2017).

    Google Scholar 

  • Hartwig, N. L. & Ammon, H. U. Cover crops and living mulches. Weed Sci. 50(6), 688–699 (2002).

    CAS 

    Google Scholar 

  • Raseduzzaman, M. D. & Jensen, E. S. Does intercropping enhance yield stability in arable crop production? A meta-analysis. Eur. J. Agron. 91, 25–33 (2017).

    Google Scholar 

  • Davis, A. S., Hill, J. D., Chase, C. A., Johanns, A. M. & Liebman, M. Increasing cropping system diversity balances productivity, profitability and environmental health. PLoS One 7(10), e47149 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Himmelstein, J., Ares, A., Gallagher, D. & Myers, J. A meta-analysis of intercropping in Africa: Impacts on crop yield, farmer income, and integrated pest management effects. Int. J. Agric. Sustain. 15(1), 1–10 (2017).

    Google Scholar 

  • Abson, D. J., Fraser, E. D. & Benton, T. G. Landscape diversity and the resilience of agricultural returns: A portfolio analysis of land-use patterns and economic returns from lowland agriculture. Agric. Food Secur. 2(1), 1–15 (2013).

    Google Scholar 

  • Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571(7764), 257–260 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gaudin, A. C. et al. Increasing crop diversity mitigates weather variations and improves yield stability. PLoS One 10(2), e0113261 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2(3), 284–293 (2020).

    ADS 

    Google Scholar 

  • Chauhan, B. S., Singh, R. G. & Mahajan, G. Ecology and management of weeds under conservation agriculture: A review. Crop Prot. 38, 57–65 (2012).

    Google Scholar 

  • Nichols, V., Verhulst, N., Cox, R. & Govaerts, B. Weed dynamics and conservation agriculture principles: A review. Field Crop Res. 183, 56–68 (2015).

    Google Scholar 

  • Banik, P., Midya, A., Sarkar, B. K. & Ghose, S. S. Wheat and chickpea intercropping systems in an additive series experiment: Advantages and weed smothering. Eur. J. Agron. 24(4), 325–332 (2006).

    Google Scholar 

  • Workayehu, T. & Wortmann, C. S. Maize–bean intercrop weed suppression and profitability in Southern Ethiopia. Agron. J. 103(4), 1058–1063 (2011).

    Google Scholar 

  • Haugaard-Nielsen, H., Ambus, P. & Jensen, E. S. Interspecific competition, N use and interference with weeds in pea barley intercropping. Field Crop Res. 70, 101–109 (2001).

    Google Scholar 

  • Jensen, E. S. Intercropping of Cereals and Grain Legumes for Increased Production, Weed Control, Improved Product Quality and Prevention of N-losses in European Organic Farming Systems, Final Report on Intercrop Project (QLK5-CT-2002-02352) (Risø National Laboratory, 2006).

  • Arlauskienė, A., Šarūnaitė, L., Kadžiulienė, Ž, Deveikytė, I. & Maikštėnienė, S. Suppression of annual weeds in pea and cereal intercrops. Agron. J. 106(5), 1765–1774 (2014).

    Google Scholar 

  • Szumigalski, A. & van Acker, R. Weed suppression and crop production in annual intercrops. Weed Sci. 53(6), 813–825 (2005).

    CAS 

    Google Scholar 

  • Stoltz, E. & Nadeau, E. Effects of intercropping on yield, weed incidence, forage quality and soil residual N in organically grown forage maize (Zea mays L.) and faba bean (Vicia faba L.). Field Crop Res. 169, 21–29 (2014).

    Google Scholar 

  • Sauerborn, J., Müller-Stöver, D. & Hershenhorn, J. The role of biological control in managing parasitic weeds. Crop Prot. 26(3), 246–254 (2007).

    Google Scholar 

  • Jamil, M., Rodenburg, J., Charnikhova, T. & Bouwmeester, H. J. Pre-attachment Striga hermonthica resistance of New Rice for Africa (NERICA) cultivars based on low strigolactone production. New Phytol. 192(4), 964–975. https://doi.org/10.1111/j.1469-8137.2011.03850.x (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yoneyama, K. et al. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227(1), 125–132. https://doi.org/10.1007/s00425-007-0600-5 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sauerborn, J. Legumes used for weed control in agroecosystems in the tropics. Plant Res. Dev. 50, 74–82 (1999).

    Google Scholar 

  • Ejeta, G. & Butler, L. G. Host-parasite interactions throughout the Striga life cycle, and their contributions to Striga resistance. Afr. Crop Sci. J. 1(2), 75–80. https://doi.org/10.4314/acsj.v1i2.69889 (1993).

    Article 

    Google Scholar 

  • Carsky, R. J., Singh, L. & Ndikawa, R. Suppression of Striga hermonthica on sorghum using a cowpea intercrop. Exp. Agric. 30(3), 349–358. https://doi.org/10.1017/s0014479700024467 (1994).

    Article 

    Google Scholar 

  • Hsiao, A. I., Worsham, A. D. & Moreland, D. E. Effects of temperature and dl-strigol on seed conditioning and germination of witchweed (Striga asiatica). Ann. Bot. 61(1), 65–72. https://doi.org/10.1093/oxfordjournals.aob.a087528 (1988).

    Article 
    CAS 

    Google Scholar 

  • Patterson, D. T. Effects of Environment on Growth and Reproduction of Witchweed and the Ecological Range of Witchweed (Monograph Series of the Weed Science Society of America, 1990).

  • Stewart, G. R. & Press, M. C. The physiology and biochemistry of parasitic angiosperms. Annu. Rev. Plant Biol. 41(1), 127–151. https://doi.org/10.1146/annurev.pp.41.060190.001015 (1990).

    Article 
    CAS 

    Google Scholar 

  • Anil, L., Park, R. H. P. & Miller, F. A. Temperate intercropping of cereals for forage: A review of the potential for growth and utilization with particular reference to the UK. Grass Forage Sci. 53, 301–317 (1998).

    Google Scholar 

  • Mamolos, A. & Kalburtji, K. Significance of allelopathy in crop rotation. J. Crop Prod. 4, 197–218 (2001).

    Google Scholar 

  • Khan, T. D., Chung, M. I., Xuan, T. D. & Tawata, S. The exploitation of crop allelopathy in sustainable agricultural production. J. Agron. Crop Sci. 191(3), 172–184 (2005).

    Google Scholar 

  • Cissoko, M., Boisnard, A., Rodenburg, J., Press, M. C. & Scholes, J. D. New Rice for Africa (NERICA) cultivars exhibit different levels of post-attachment resistance against the parasitic weeds Striga hermonthica and Striga asiatica. New Phytol. 192(4), 952–963 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Rodenburg, J. et al. Do NERICA rice cultivars express resistance to Striga hermonthica (Del.) Benth. and Striga asiatica (L.) Kuntze under field conditions?. Field Crop Res. 170, 83–94 (2015).

    Google Scholar 

  • Randrianjafizanaka, M. T., Autfray, P., Andrianaivo, A. P., Ramonta, I. R. & Rodenburg, J. Combined effects of cover crops, mulch, zero-tillage and resistant varieties on Striga asiatica (L.) Kuntze in rice-maize rotation systems. Agric. Ecosyst. Environ. 256, 23–33 (2018).

    Google Scholar 

  • Rodenburg, J. et al. Genetic variation and host–parasite specificity of Striga resistance and tolerance in rice: The need for predictive breeding. New Phytol. 214(3), 1267–1280. https://doi.org/10.1111/nph.14451 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nickrent, D. L. & Musselman, L. J. Introduction to parasitic flowering plants. Plant Health Instr. 13(6), 300–315 (2004).

    Google Scholar 

  • Parker, C. Parasitic weeds: A world challenge. Weed Sci. 60(2), 269–276 (2012).

    CAS 

    Google Scholar 

  • Shai Vaingast 2014. im2graph. Retrieved from: https://www.im2graph.co.il/free-downloads/windows-3264bit/ (2014).

  • Google Maps 2021. https://maps.google.com [Accessed February 2021–December 2022].

  • Kambach, S. et al. Consequences of multiple imputation of missing standard deviations and sample sizes in meta-analysis. Ecol. Evol. 10(20), 11699–11712 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakagawa, S. & Freckleton, R. P. Missing inaction: The dangers of ignoring missing data. Trends Ecol. Evol. 23(11), 592–596 (2008).

    PubMed 

    Google Scholar 

  • Idris, N. R. N. & Robertson, C. The effects of imputing the missing standard deviations on the standard error of meta analysis estimates. Commun. Stat. Simul. Comput. 38(3), 513–526. https://doi.org/10.1080/03610910802556106 (2009).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • van Buuren, S. & Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1–67 (2011).

    Google Scholar 

  • van Buuren, S. Flexible Imputation of Missing Data (CRC Press, 2018).

    MATH 

    Google Scholar 

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086 (2017).

    Article 

    Google Scholar 

  • O’Donnell, M. S. & Ignizio, D. A. Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geol. Surv. Data Ser. 691(10), 4–9 (2012).

    Google Scholar 

  • Reuter, H. I., Nelson, A. & Jarvis, A. An evaluation of void filling interpolation methods for SRTM data. Int. J. Geogr. Inf. Sci. 21(9), 983–1008 (2007).

    Google Scholar 

  • CGIAR—Consortium for Spatial Information. http://srtm.csi.cgiar.org © 2004–2021. Accessed September 19, 2021, via: http://srtm.csi.cgiar.org/srtmdata/.

  • QGIS Development Team. QGIS Geographic Information System http://qgis.osgeo.org (Open Source Geospatial Foundation Project, 2020).

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82(13), 26. https://doi.org/10.18637/jss.v082.i13 (2017).

    Article 

    Google Scholar 

  • Song, C., Peacor, S. D., Osenberg, C. W. & Bence, J. R. An assessment of statistical methods for non-independent data in ecological meta-analyses. Ecology 101(12), e03184. https://doi.org/10.1002/ecy.3184 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Del Rey, A. C. compute.es: Compute Effect Sizes. R package version 0.2-2. https://cran.r-project.org/package=compute.es (2013).

  • R Core Team. R: A language and environment for statistical computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2020).

  • Wickham, H., Francois, R., Henry, L. & Müller, K. dplyr: A grammar of data manipulation. R package version 0.4. 3 (2015)

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 48. https://doi.org/10.18637/jss.v067.i01 (2015).

    Article 

    Google Scholar 

  • Liebman, M. & Dyck, E. Crop rotation and intercropping strategies for weed management. Ecol. Appl. 3(1), 92–122 (1993).

    PubMed 

    Google Scholar 

  • Pumariño, L. et al. Effects of agroforestry on pest, disease and weed control: A meta-analysis. Basic Appl. Ecol. 16(7), 573–582 (2015).

    Google Scholar 

  • Kuyah, S., Whitney, C. W., Jonsson, M., Sileshi, G. W., Öborn, I., Muthuri, C. W. & Luedeling, E. Agroforestry delivers a win-win solution for ecosystem services in sub-Saharan Africa. A meta-analysis (2019).

  • Evidente, A., Fernandez-Aparicio, M., Andolfi, A., Rubiales, D. & Motta, A. Trigoxazonane, a mono-substituted trioxazonane from Trigonella foenumgraecum root exudates, inhibits Orobanche crenata seed germination. Phytochemistry 68, 2487–2492 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Khan, Z. R. et al. Control of witchweed Striga hermonthica by intercropping with Desmodium spp., and the mechanism defined as allelopathic. J. Chem. Ecol. 28(9), 1871–1885 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Nakagawa, S. et al. Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods Ecol. Evol. 13(1), 4–21 (2022).

    Google Scholar 

  • Bakker, A. et al. Beyond small, medium, or large: Points of consideration when interpreting effect sizes. Educ. Stud. Math. 102(1), 1–8 (2019).

    Google Scholar 

  • Scott, D. et al. Mapping the drivers of parasitic weed abundance at a national scale: A new approach applied to Striga asiatica in the mid-west of Madagascar. Weed Res. 60(5), 323–333 (2020).

    Google Scholar 

  • Scott, D. et al. Identifying existing management practices in the control of Striga asiatica within rice–maize systems in mid-west Madagascar. Ecol. Evol. 11(19), 13579–13592 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rubiales, D. & Fernández-Aparicio, M. Innovations in parasitic weeds management in legume crops. A review. Agron. Sustain. Dev. 32(2), 433–449 (2012).

    CAS 

    Google Scholar 

  • Bir, M. S. H. et al. Weed population dynamics under climatic change. Weed Turfgrass Sci. 3(3), 174–182 (2014).

    Google Scholar 

  • Mohamed, K. I., Bolin, J. F., Musselman, L. J. & Townsend, P. A. Genetic diversity of Striga and implications for control and modelling future distributions. In Integrating New Technologies for Striga Control—Towards Ending the Witch-Hunt (eds Ejeta, G. & Gressel, J.) 71–84 (World Scientific, 2007).

    Google Scholar 

  • Mandumbu, R., Mutengwa, C. S., Mabasa, S. & Mwenje, E. Predictions of the Striga scourge under new climate in southern Africa. J. Biol. Sci. 17, 192–201. https://doi.org/10.3923/jbs.2017.194.201 (2017).

    Article 

    Google Scholar 

  • Mudereri, B. T. et al. Multi-source spatial data-based invasion risk modelling of Striga (Striga asiatica) in Zimbabwe. GIScience Remote Sens. 57(4), 553–571. https://doi.org/10.1080/15481603.2020.1744250 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    The fate of terrestrial biodiversity during an oceanic island volcanic eruption

    Evaluate the photosynthesis and chlorophyll fluorescence of Epimedium brevicornu Maxim