in

Evolution of cross-tolerance in Drosophila melanogaster as a result of increased resistance to cold stress

  • Prasad, N. G. & Joshi, A. What have two decades of laboratory life-history evolution studies on Drosophila melanogaster taught us?. J. Genet. 82, 45–76 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • MacMillan, H. A., Walsh, J. P. & Sinclair, B. J. The effects of selection for cold tolerance on cross-tolerance to other environmental stressors in Drosophila melanogaster. Insect Sci. 16, 263–276 (2009).

    Google Scholar 

  • Flatt, T. Life-history evolution and the genetics of fitness components in drosophila melanogaster. Genetics 214(1), 3–48. https://doi.org/10.1534/genetics.119.300160 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hoffmann, A. A. & Parsons, P. A. Selection for increased desiccation resistance in Drosophila melanogaster: Additive genetic control and correlated responses for other stresses. Genetics 122, 837–845 (1989).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nghiem, D., Gibbs, A. G., Rose, M. R. & Bradley, T. J. Postponed aging and desiccation resistance in Drosophila melanogaster. Exp. Gerontol. 35, 957–969 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Hoffmann, A. A., Scott, M., Partridge, L. & Hallas, R. Overwintering in Drosophila melanogaster: Outdoor field cage experiments on clinal and laboratory selected populations help to elucidate traits under selection. J. Evol. Biol. 16, 614–623 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Bubliy, O. A. & Loeschcke, V. Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster. J. Evol. Biol. 18, 789–803 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Bourg, É. L. & Le Bourg, É. A cold stress applied at various ages can increase resistance to heat and fungal infection in aged Drosophila melanogaster flies. Biogerontology 12, 185–193 (2011).

    PubMed 

    Google Scholar 

  • Sejerkilde, M., Sørensen, J. G. & Loeschcke, V. Effects of cold- and heat hardening on thermal resistance in Drosophila melanogaster. J. Insect Physiol. 49, 719–726 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Coulson, S. C. & Bale, J. S. Effect of rapid cold hardening on reproduction and survival of offspring in the housefly Musca domestica. J. Insect Physiol. 38, 421–424 (1992).

    Google Scholar 

  • Bayley, M., Petersen, S. O., Knigge, T., Köhler, H.-R. & Holmstrup, M. Drought acclimation confers cold tolerance in the soil collembolan Folsomia candida. J. Insect Physiol. 47, 1197–1204 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Wu, B. S. et al. Anoxia induces thermotolerance in the locust flight system. J. Exp. Biol. 205, 815–827 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Phelan, J. P. et al. Breakdown in correlations during laboratory evolution. I. Comparative analyses of Drosophila populations. Evolution 57, 527–535 (2003).

    PubMed 

    Google Scholar 

  • Hoffmann, A. A. & Harshman, L. G. Desiccation and starvation resistance in Drosophila: Patterns of variation at the species, population and intrapopulation levels. Heredity 83(Pt 6), 637–643 (1999).

    PubMed 

    Google Scholar 

  • Sinclair, B. J., Nelson, S., Nilson, T. L., Roberts, S. P. & Gibbs, A. G. The effect of selection for desiccation resistance on cold tolerance of Drosophila melanogaster. Physiol. Entomol. 32, 322–327 (2007).

    Google Scholar 

  • Anderson, A. R., Hoffmann, A. A. & McKechnie, S. W. Response to selection for rapid chill-coma recovery in Drosophila melanogaster: Physiology and life-history traits. Genet. Res. 85, 15–22 (2005).

    PubMed 

    Google Scholar 

  • Kellett, M., Hoffmann, A. A. & Mckechnie, S. W. Hardening capacity in the Drosophila melanogaster species group is constrained by basal thermotolerance. Funct. Ecol. 19, 853–858 (2005).

    Google Scholar 

  • Overgaard, J., Sørensen, J. G., Petersen, S. O., Loeschcke, V. & Holmstrup, M. Reorganization of membrane lipids during fast and slow cold hardening in Drosophila melanogaster. Physiol. Entomol. 31, 328–335 (2006).

    CAS 

    Google Scholar 

  • Hoffmann, A. A., Hallas, R., Anderson, A. R. & Telonis-Scott, M. Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster. J. Evol. Biol. 18, 804–810 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Singh, K., Kochar, E. & Prasad, N. G. Egg Viability, Mating Frequency and Male Mating Ability Evolve in Populations of Drosophila melanogaster Selected for Resistance to Cold Shock. PLoS ONE 10, e0129992 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Singh, K., Kochar, E., Gahlot, P., Bhatt, K. & Prasad, N. G. Evolution of reproductive traits have no apparent life-history associated cost in populations of Drosophila melanogaster selected for cold shock resistance. BMC Ecol. Evol. 21, 1–4 (2021).

    Google Scholar 

  • Salehipour-Shirazi, G., Ferguson, L. V. & Sinclair, B. J. Does cold activate the Drosophila melanogaster immune system?. J. Insect Physiol. 96, 29–34 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Singh, K., Zulkifli, M. & Prasad, N. G. Identification and characterization of novel natural pathogen of Drosophila melanogaster isolated from wild captured Drosophila spp. Microbes Infect. 18, 813–821 (2016).

    PubMed 

    Google Scholar 

  • Singh, K., Samant, M. A., Tom, M. T. & Prasad, N. G. Evolution of Pre- and Post-Copulatory Traits in Male Drosophila melanogaster as a Correlated Response to Selection for Resistance to Cold Stress. PLoS ONE 11, e0153629 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lefevre, G. J. & Jonsson, U. B. The effect of cold shock on D. melanogaster sperm. Drosophila Inf. Serv. 1962(36), 86–876 (1962).

    Google Scholar 

  • Novitski, E. & Rush, G. Viability and fertility of Drosophila exposed to sub-zero temperatures. Biol. Bull. 97, 150–157 (1949).

    CAS 
    PubMed 

    Google Scholar 

  • Arbogast, R. T. Mortality and Reproduction of Ephestia cautella and Plodia interpunctella 1 Exposed as Pupae to High Temperatures. Environ. Entomol. 10, 708–711 (1981).

    Google Scholar 

  • Saxena, B. P., Sharma, P. R., Thappa, R. K. & Tikku, K. Temperature induced sterilization for control of three stored grain beetles. J. Stored Prod. Res. 28, 67–70 (1992).

    Google Scholar 

  • Collett, J. I. & Jarman, M. G. Adult female Drosophila pseudoobscura survive and carry fertile sperm through long periods in the cold: Populations are unlikely to suffer substantial bottlenecks in overwintering. Evolution 55, 840–845 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Schnebel, E. M. & Grossfield, J. Mating-temperature range in drosophila. Evolution 38, 1296–1307 (1984).

    PubMed 

    Google Scholar 

  • Chakir, M., Chafik, A., Moreteau, B., Gibert, P. & David, J. R. Male sterility thermal thresholds in Drosophila: D. simulans appears more cold-adapted than its sibling D. melanogaster. Genetica 114, 195–205 (2002).

    PubMed 

    Google Scholar 

  • David, J. R. et al. Male sterility at extreme temperatures: A significant but neglected phenomenon for understanding Drosophila climatic adaptations. J. Evol. Biol. 18, 838–846 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Dolgin, E. S., Whitlock, M. C. & Agrawal, A. F. Male Drosophila melanogaster have higher mating success when adapted to their thermal environment. J. Evol. Biol. 19, 1894–1900 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • David, J. R. Male sterility at high and low temperatures in Drosophila. J. Soc. Biol. 202, 113–117 (2008).

    PubMed 

    Google Scholar 

  • Zhang, W., Zhao, F., Hoffmann, A. A. & Ma, C.-S. A single hot event that does not affect survival but decreases reproduction in the diamondback moth, plutella xylostella. PLoS ONE 8, e75923 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tucić, N. Genetic capacity for adaptation to cold resistance at different developmental stages of Drosophila melanogaster. Evolution 33, 350–358 (1979).

    PubMed 

    Google Scholar 

  • Chen, C.-P. & Walker, V. K. Increase in cold-shock tolerance by selection of cold resistant lines in Drosophila melanogaster. Ecol. Entomol. 18, 184–190 (1993).

    Google Scholar 

  • Ring, R. A. & Danks, H. V. Desiccation and cryoprotection: Overlapping adaptations. Cryo Lett. 15, 181–190 (1994).

    Google Scholar 

  • Ring, R. A. & Danks, H. The role of trehalose in cold-hardiness and desiccation. Cryo Lett. 19, 275–282 (1998).

    CAS 

    Google Scholar 

  • Singh, K. & Prasad, N. G. Cold stress upregulates the expression of heat shock proteins and Frost genes, but evolution of cold stress resistance is apparently not mediated through either heat shock proteins or Frost genes in the cold stress selected population. bioRxiv https://doi.org/10.1101/2022.03.07.483305 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bubliy, O. A., Kristensen, T. N., Kellermann, V. & Loeschcke, V. Plastic responses to four environmental stresses and cross-resistance in a laboratory population of Drosophila melanogaster. Funct. Ecol. 26, 245–253 (2012).

    Google Scholar 

  • Kristensen, T. N., Loeschcke, V. & Hoffmann, A. A. Can artificially selected phenotypes influence a component of field fitness? Thermal selection and fly performance under thermal extremes. Proc. Biol. Sci. 274, 771–778 (2007).

    PubMed 

    Google Scholar 

  • Hoffmann, A. A., Anderson, A. & Hallas, R. Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecol. Lett. 5, 614–618 (2002).

    Google Scholar 

  • Yi, S.-X. & Lee, R. E. Jr. Detecting freeze injury and seasonal cold-hardening of cells and tissues in the gall fly larvae, Eurosta solidaginis (Diptera: Tephritidae) using fluorescent vital dyes. J. Insect Physiol. 49, 999–1004 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Macmillan, H. A. & Sinclair, B. J. Mechanisms underlying insect chill-coma. J. Insect Physiol. 57, 12–20 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Marshall, K. E. & Sinclair, B. J. The sub-lethal effects of repeated freezing in the woolly bear caterpillar Pyrrharctia isabella. J. Exp. Biol. 214, 1205–1212 (2011).

    PubMed 

    Google Scholar 

  • Sinclair, B. J., Ferguson, L. V., Salehipour-shirazi, G. & MacMillan, H. A. Cross-tolerance and cross-talk in the cold: Relating low temperatures to desiccation and immune stress in insects. Integr. Comp. Biol. 53, 545–556 (2013).

    PubMed 

    Google Scholar 

  • Roxström-Lindquist, K., Terenius, O. & Faye, I. Parasite-specific immune response in adult Drosophila melanogaster: A genomic study. EMBO Rep. 5, 207–212 (2004).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pham, L. N., Dionne, M. S., Shirasu-Hiza, M. & Schneider, D. S. A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog. 3, e26 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mikonranta, L., Mappes, J., Kaukoniitty, M. & Freitak, D. Insect immunity: Oral exposure to a bacterial pathogen elicits free radical response and protects from a recurring infection. Front. Zool. 11, 23 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramløv, H. & Lee, R. E. Jr. Extreme resistance to desiccation in overwintering larvae of the gall fly Eurosta solidaginis (Diptera, tephritidae). J. Exp. Biol. 203, 783–789 (2000).

    PubMed 

    Google Scholar 

  • Holmstrup, M., Bayley, M. & Ramløv, H. Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable arctic invertebrates. Proc. Natl. Acad. Sci. 99, 5716–5720 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chippindale, A. K. et al. Resource acquisition and the evolution of stress resistance in drosophila melanogaster. Evolution 52, 1342 (1998).

    PubMed 

    Google Scholar 

  • Rose, M. R. Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution 38, 1004–1010 (1984).

    ADS 
    PubMed 

    Google Scholar 

  • Crill, W. D., Huey, R. B. & Gilchrist, G. W. Within- and between-generation effects of temperature on the morphology and physiology of Drosophila melanogaster. Evolution 50, 1205–1218 (1996).

    PubMed 

    Google Scholar 

  • Kwan, L., Bedhomme, S., Prasad, N. G. & Chippindale, A. K. Sexual conflict and environmental change: Trade-offs within and between the sexes during the evolution of desiccation resistance. J. Genet. 87, 383–394 (2008).

    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Crop diversification and parasitic weed abundance: a global meta-analysis

    With new heat treatment, 3D-printed metals can withstand extreme conditions