in

Modelling the Mediterranean Sea ecosystem at high spatial resolution to inform the ecosystem-based management in the region

  • Barbier, E. B. Marine ecosystem services. Curr. Biol. 27, R507–R510 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Liquete, C., Piroddi, C., Macías, D., Druon, J.-N. & Zulian, G. Ecosystem services sustainability in the Mediterranean Sea: Assessment of status and trends using multiple modelling approaches. Sci. Rep. 6, 34162 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 1–8 (2019).

    CAS 

    Google Scholar 

  • Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Long, R. D., Charles, A. & Stephenson, R. L. Key principles of marine ecosystem-based management. Mar. Policy 57, 53–60 (2015).

    Google Scholar 

  • Link, J. S. & Browman, H. I. Operationalizing and implementing ecosystem-based management. ICES J. Mar. Sci. 74, 379–381 (2017).

    Google Scholar 

  • EC. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. Brussels: European Commission. (2020).

  • EC. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, “Pathway to a healthy planet for all” with the sub-title “EU action Plan: ’Towards zero pollution for air, water and soil, COM (2021) 400. (2021).

  • EC. The European Green Deal. Communication from the Commission to the European Parliament, the European Council, the European Economic and Social Committee and the Committee of the Regions, COM (2019) 640. (2019).

  • Alexander, K. & Haward, M. The human side of marine ecosystem-based management (EBM): ‘Sectoral interplay’ as a challenge to implementing EBM. Mar. Policy 101, 33–38 (2019).

    Google Scholar 

  • EC. The EU Blue Economy Report 2021. (2021).

  • Ostlaender, N. et al. Modelling Inventory and Knowledge Man-agement System of the European Commission (MIDAS) (Publications Office of the European Union, 2019).

    Google Scholar 

  • Friedland, R. et al. Effects of nutrient management scenarios on marine eutrophication indicators: A Pan-European, multi-model assessment in support of the Marine Strategy Framework Directive. Front. Mar. Sci. 8, 596126 (2021).

    Google Scholar 

  • Piroddi, C. et al. Effects of nutrient management scenarios on marine food webs: A Pan-European Assessment in support of the Marine Strategy Framework Directive. Front. Mar. Sci. 8, 179 (2021).

    Google Scholar 

  • Corrales, X. et al. Multi-zone marine protected areas: Assessment of ecosystem and fisheries benefits using multiple ecosystem models. Ocean Coast. Manag. 193, 105232 (2020).

    Google Scholar 

  • Bentley, J. W. et al. Refining fisheries advice with stock-specific ecosystem information. Front. Mar. Sci. 8, 602072 (2021).

    Google Scholar 

  • Steenbeek, J. et al. Making spatial-temporal marine ecosystem modelling better—A perspective. Environ. Model. Softw. 145, 105209 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Heymans, J. J. et al. The ocean decade: A true ecosystem modelling challenge. Front. Mar. Sci. 7, 554573 (2020).

    Google Scholar 

  • Hernvann, P.-Y. et al. The Celtic sea through time and space: Ecosystem modeling to unravel fishing and climate change impacts on food-web structure and dynamics. Front. Mar. Sci. 7, 1018 (2020).

    Google Scholar 

  • Christensen, V. & Walters, C. J. Ecopath with Ecosim: Methods, capabilities and limitations. Ecol. Model. 172, 109–139 (2004).

    Google Scholar 

  • Steenbeek, J. et al. Bridging the gap between ecosystem modeling tools and geographic information systems: Driving a food web model with external spatial–temporal data. Ecol. Model. 263, 139–151 (2013).

    Google Scholar 

  • Christensen, V. et al. Representing variable habitat quality in a spatial food web model. Ecosystems 17, 1397–1412 (2014).

    CAS 

    Google Scholar 

  • de Mutsert, K., Lewis, K., Milroy, S., Buszowski, J. & Steenbeek, J. Using ecosystem modeling to evaluate trade-offs in coastal management: Effects of large-scale river diversions on fish and fisheries. Ecol. Model. 360, 14–26 (2017).

    Google Scholar 

  • Serpetti, N. et al. Modelling small scale impacts of Multi-Purpose Platforms: An ecosystem approach. Front. Mar. Sci. 8, 778 (2021).

    Google Scholar 

  • DFO. Technical review of Roberts Bank Terminal 2 environmental assessment: section 10.3—assessing ecosystem productivity. DFO Can. Sci. Advis. Sec. Sci. Resp. 2016/050 (2016).

  • Coll, M., Pennino, M. G., Steenbeek, J., Solé, J. & Bellido, J. M. Predicting marine species distributions: Complementarity of food-web and Bayesian hierarchical modelling approaches. Ecol. Model. 405, 86–101 (2019).

    Google Scholar 

  • Coll, M. et al. The biodiversity of the Mediterranean Sea: Estimates, patterns, and threats. PLoS One 5, e11842 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coll, M. et al. The Mediterranean Sea under siege: Spatial overlap between marine biodiversity, cumulative threats and marine reserves. Glob. Ecol. Biogeogr. 21, 465–480 (2012).

    Google Scholar 

  • Micheli, F. et al. Cumulative human impacts on mediterranean and black sea marine ecosystems: Assessing current pressures and opportunities. PLoS One 8, e79889 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Piroddi, C., Colloca, F. & Tsikliras, A. C. The living marine resources in the Mediterranean Sea large marine ecosystem. Environ. Dev. 36, 100555 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Barale, V. & Gade, M. Remote Sensing of the European Seas. (Springer, 2008).

  • Siokou-Frangou, I. et al. Plankton in the open Mediterranean Sea: A review. Biogeosciences 7, 1543–1586 (2010).

    ADS 

    Google Scholar 

  • Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).

    Google Scholar 

  • Bianchi, C. N. et al. In Life in the Mediterranean Sea: A Look at Habitat Changes, vol. 1 55 (2012).

  • Danovaro, R. et al. Deep-sea biodiversity in the Mediterranean Sea: The known, the unknown, and the unknowable. PLoS One 5, e11832 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moullec, F. et al. Capturing the big picture of Mediterranean marine biodiversity with an end-to-end model of climate and fishing impacts. Prog. Oceanogr. 178, 102179 (2019).

    Google Scholar 

  • Macias, D., Garcia-Gorriz, E., Piroddi, C. & Stips, A. Biogeochemical control of marine productivity in the Mediterranean Sea during the last 50 years. Glob. Biogeochem. Cycles 28, 897–907 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Piroddi, C. et al. Historical changes of the Mediterranean Sea ecosystem: Modelling the role and impact of primary productivity and fisheries changes over time. Sci. Rep. 7, 44491 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lotze, H. K., Coll, M. & Dunne, J. A. Historical changes in marine resources, food-web structure and ecosystem functioning in the Adriatic Sea, Mediterranean. Ecosystems 14, 198–222 (2011).

    Google Scholar 

  • Macias, D., Huertas, I. E., Garcia-Gorriz, E. & Stips, A. Non-Redfieldian dynamics driven by phytoplankton phosphate frugality explain nutrient and chlorophyll patterns in model simulations for the Mediterranean Sea. Prog. Oceanogr. 173, 37–50 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spedicato, M. T. et al. The MEDITS trawl survey specifications in an ecosystem approach to fishery management. Sci. Mar. 83, 9–20 (2019).

    Google Scholar 

  • Corrales, X. et al. Hindcasting the dynamics of an Eastern Mediterranean marine ecosystem under the impacts of multiple stressors. Mar. Ecol. Prog. Ser. 580, 17–36 (2017).

    ADS 

    Google Scholar 

  • FAO. The State of the Mediterranean and Black Sea fisheries (General Fisheries Commission for the Mediterranean (GFCM), 2020).

  • Ferrà, C. et al. Mapping change in bottom trawling activity in the Mediterranean Sea through AIS data. Mar. Policy 94, 275–281 (2018).

    Google Scholar 

  • Russo, T. et al. Trends in effort and yield of trawl fisheries: A case study from the Mediterranean Sea. Front. Mar. Sci. 6, 153 (2019).

    ADS 

    Google Scholar 

  • Ramírez, F., Coll, M., Navarro, J., Bustamante, J. & Green, A. J. Spatial congruence between multiple stressors in the Mediterranean Sea may reduce its resilience to climate impacts. Sci. Rep. 8, 1–8 (2018).

    Google Scholar 

  • Coll, M., Steenbeek, J., Ben Rais Lasram, F., Mouillot, D. & Cury, P. ‘Low-hanging fruit’ for conservation of marine vertebrate species at risk in the Mediterranean Sea. Glob. Ecol. Biogeogr. 24, 226–239 (2015).

    Google Scholar 

  • Ruiz, J. et al. “Strengthening regional cooperation in the area of large pelagic fishery data collection (RECOLAPE)”, Annex III “Biological data collection for fisheries on highly migratory species” (2019).

  • Boerder, K., Schiller, L. & Worm, B. Not all who wander are lost: Improving spatial protection for large pelagic fishes. Mar. Policy 105, 80–90 (2019).

    Google Scholar 

  • Giakoumi, S. et al. Conserving European biodiversity across realms. Conserv. Lett. 12, e12586 (2019).

    Google Scholar 

  • Gascuel, D. & Cheung, W. W. In Predicting Future Oceans 79–85 (Elsevier, 2019).

  • Macias, D., Garcia-Gorriz, E. & Stips, A. Major fertilization sources and mechanisms for Mediterranean Sea coastal ecosystems. Limnol. Oceanogr. 63, 897–914 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Alvarez-Berastegui, D., Tugores, M., Ottmann, D., Martín-Quetglas, M. & Reglero, P. Bluefin tuna larval indices in the Western Mediterranean, ecological and analytical sources of uncertainty. Collect. Vol. Sci. Pap. ICCAT. 77, 289–311 (2020).

    Google Scholar 

  • ICCAT. 2020 SCRS Advice to the Commission (Madrid, Spain, 2020).

  • Clavel-Henry, M., Piroddi, C., Quattrocchi, F., Macias, D. & Christensen, V. Spatial distribution and abundance of mesopelagic fish biomass in the Mediterranean Sea. Front. Mar. Sci. 7, 1136 (2020).

    Google Scholar 

  • García-Ruiz, C. et al. Spatio-temporal patterns of macrourid fish species in the northern Mediterranean Sea. Sci. Mar. 83, 117–127 (2019).

    Google Scholar 

  • Ainsworth, C. Quantifying species abundance trends in the Northern Gulf of California using local ecological knowledge. Mar. Coast. Fish. 3, 190–218 (2011).

    Google Scholar 

  • Morris, E. K. et al. Choosing and using diversity indices: Insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 4, 3514–3524 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Coll, M. et al. Ecological indicators to capture the effects of fishing on biodiversity and conservation status of marine ecosystems. Ecol. Ind. 60, 947–962 (2016).

    Google Scholar 

  • Swartz, W., Sala, E., Tracey, S., Watson, R. & Pauly, D. The spatial expansion and ecological footprint of fisheries (1950 to present). PLoS One 5, e15143 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Damasio, L. M., Peninno, M. G. & Lopes, P. F. Small changes, big impacts: Geographic expansion in small-scale fisheries. Fish. Res. 226, 105533 (2020).

    Google Scholar 

  • Coll, M. et al. Assessing fishing and marine biodiversity changes using fishers’ perceptions: The Spanish Mediterranean and Gulf of Cadiz case study. PLoS One 9, e85670 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsikliras, A. C., Dinouli, A., Tsiros, V.-Z. & Tsalkou, E. The Mediterranean and Black Sea fisheries at risk from overexploitation. PLoS ONE 10, e0121188 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pittman, S. et al. Seascape ecology: Identifying research priorities for an emerging ocean sustainability science. Mar. Ecol. Prog. Ser. 663, 1–29 (2021).

    ADS 

    Google Scholar 

  • Kritzer, J. P. & Liu, O. R. In Stock Identification Methods 29–57 (Elsevier, 2014).

  • Piroddi, C., Heymans, J. J., Macias, D., Gregoire, M. & Townsend, H. Editorial: Using ecological models to support and shape environmental policy decisions. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.815313 (2021).

    Google Scholar 

  • Macias, D. et al. JRC marine modelling framework in support of the marine strategy framework directive: Inventory of models, basin configurations and datasets. Update 2018. (2018).

  • Piante, C. & Ody, D. Blue Growth in the Mediterranean Sea: The Challenge of Good Environmental Status. 192 (France, 2015).

  • Borja, A. et al. Past and future grand challenges in marine ecosystem ecology. Front. Mar. Sci. 7, 362 (2020).

    Google Scholar 

  • Claudet, J., Loiseau, C., Sostres, M. & Zupan, M. Underprotected marine protected areas in a global biodiversity hotspot. One Earth 2, 380–384 (2020).

    ADS 

    Google Scholar 

  • Piroddi, C., Coll, M., Steenbeek, J., Moy, D. M. & Christensen, V. Modelling the Mediterranean marine ecosystem as a whole: Addressing the challenge of complexity. Mar. Ecol. Prog. Ser. 533, 47–65 (2015).

    ADS 

    Google Scholar 

  • Walters, C., Pauly, D. & Christensen, V. Ecospace: Prediction of mesoscale spatial patterns in trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected areas. Ecosystems 2, 539–554 (1999).

    Google Scholar 

  • Christensen, V., Walters, C., Pauly, D. & Forrest, R. Ecopath with Ecosim 6: A User’s Guide (University of British Columbia, 2008).

    Google Scholar 

  • Kaschner, K. et al. AquaMaps: Predicted range maps for aquatic species. In World Wide Web Electronic Publication, www.aquamaps.org, Version, vol. 8, 2016 (2016).

  • De Mutsert, K., Lewis, K. A., White, E. D. & Buszowski, J. End-to-End modeling reveals species-specific effects of large-scale coastal restoration on living resources facing climate change. Front. Mar. Sci. 8, 104 (2021).

    Google Scholar 

  • Coll, M. et al. Advancing global ecological modeling capabilities to simulate future trajectories of change in marine ecosystems. Front. Mar. Sci. 741, 567877 (2020).

    Google Scholar 

  • Shannon, C. & Weaver, W. (Univ. Illinois Press, 1949).

  • Ainsworth, C. H. & Pitcher, T. J. Modifying Kempton’s species diversity index for use with ecosystem simulation models. Ecol. Ind. 6, 623–630 (2006).

    Google Scholar 

  • Coll, M. & Steenbeek, J. Standardized ecological indicators to assess aquatic food webs: The ECOIND software plug-in for Ecopath with Ecosim models. Environ. Model. Softw. 89, 120–130 (2017).

    Google Scholar 

  • Taconet, M., Kroodsma, D. & Fernandes, J. Global Atlas of AIS-Based Fishing Activity—Challenges and Opportunities (2021).


  • Source: Ecology - nature.com

    Nonabah Lane, Navajo educator and environmental sustainability specialist with numerous ties to MIT, dies at 46

    Keeping indoor humidity levels at a “sweet spot” may reduce spread of Covid-19