Ringø, E. et al. Probiotics, lactic acid bacteria and bacilli: Interesting supplementation for aquaculture. J. Appl. Microbiol. 129, 116–136 (2020).
Google Scholar
Borges, N. et al. Bacteriome structure, function, and probiotics in fish larviculture: The good, the bad, and the gaps. Annu. Rev. Anim. Biosci. 9, 423–452 (2021).
Google Scholar
Aguilar-Toalá, J. E. et al. Postbiotics: An evolving term within the functional foods field. Trends Food Sci. Technol. 75, 105–114 (2018).
Salminen, S. et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18, 649–667 (2021).
Google Scholar
Dash, G. et al. Evaluation of paraprobiotic applicability of Lactobacillus plantarum in improving the immune response and disease protection in giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Fish Shellf. Immunol. 43, 167–174 (2015).
Google Scholar
Dawood, M. A. O., Koshio, S., Ishikawa, M. & Yokoyama, S. Effects of partial substitution of fish meal by soybean meal with or without heat-killed Lactobacillus plantarum (LP20) on growth performance, digestibility, and immune response of Amberjack, Seriola dumerili Juveniles. Biomed. Res. Int. 2015, 514196 (2015).
Google Scholar
Dawood, M. A. O., Koshio, S., Ishikawa, M. & Yokoyama, S. Immune responses and stress resistance in red sea bream, Pagrus major, after oral administration of heat-killed Lactobacillus plantarum and vitamin C. Fish Shellf. Immunol. 54, 266–275 (2016).
Google Scholar
Dawood, M. A. O., Koshio, S., Ishikawa, M. & Yokoyama, S. Interaction effects of dietary supplementation of heat-killed Lactobacillus plantarum and β-glucan on growth performance, digestibility and immune response of juvenile red sea bream, Pagrus major. Fish Shellf. Immunol. 45, 33–42 (2015).
Google Scholar
Tung, H. T. et al. Effects of heat-killed Lactobacillus plantarum supplemental diets on growth performance, stress resistance and immune response of juvenile Kuruma shrimp Marsupenaeus japonicus bate. Aquac. Sci. 57, 175–184 (2009).
Google Scholar
Van Nguyen, N. et al. Evaluation of dietary heat-killed Lactobacillus plantarum strain L-137 supplementation on growth performance, immunity and stress resistance of Nile tilapia (Oreochromis niloticus). Aquaculture 498, 371–379 (2019).
Yang, H. et al. Effects of dietary heat-killed Lactobacillus plantarum L-137 (HK L-137) on the growth performance, digestive enzymes and selected non-specific immune responses in sea cucumber, Apostichopus japonicus Selenka. Aquac. Res. 47, 2814–2824 (2016).
Google Scholar
Singh, S. T., Kamilya, D., Kheti, B., Bordoloi, B. & Parhi, J. Paraprobiotic preparation from Bacillus amyloliquefaciens FPTB16 modulates immune response and immune relevant gene expression in Catla catla (Hamilton, 1822). Fish Shelf. Immunol. 66, 35–42 (2017).
Google Scholar
Kamilya, D., Baruah, A., Sangma, T., Chowdhury, S. & Pal, P. Inactivated probiotic bacteria stimulate cellular immune responses of catla, Catla catla (Hamilton) in vitro. Probiot. Antimicrob. Proteins 7, 101–106 (2015).
Google Scholar
Wang, J. et al. Supplementation of heat-inactivated Bacillus clausii DE 5 in diets for grouper, Epinephelus coioides, improves feed utilization, intestinal and systemic immune responses and not growth performance. Aquac. Nutr. 24, 821–831 (2018).
Google Scholar
Giri, S. S. et al. Effects of dietary heat-killed Pseudomonas aeruginosa strain VSG2 on immune functions, antioxidant efficacy, and disease resistance in Cyprinus carpio. Aquaculture 514, 734489 (2020).
Google Scholar
Shabanzadeh, S. et al. Growth performance, intestinal histology, and biochemical parameters of rainbow trout (Oncorhynchus mykiss) in response to dietary inclusion of heat-killed Gordonia bronchialis. Fish Physiol. Biochem. 42, 65–71 (2016).
Google Scholar
Wu, X. et al. Use of a paraprobiotic and postbiotic feed supplement (HWF™) improves the growth performance, composition and function of gut microbiota in hybrid sturgeon (Acipenser baerii × Acipenser schrenckii). Fish Shelf. Immunol. 104, 36–45 (2020).
Google Scholar
Mora-Sánchez, B., Balcázar, J. L. & Pérez-Sánchez, T. Effect of a novel postbiotic containing lactic acid bacteria on the intestinal microbiota and disease resistance of rainbow trout (Oncorhynchus mykiss). Biotechnol. Lett. 42, 1957–1962 (2020).
Google Scholar
Xiong, J. et al. The temporal scaling of bacterioplankton composition: High turnover and predictability during shrimp cultivation. Microb. Ecol. 67, 256–264 (2014).
Google Scholar
Martins, P. et al. Seasonal patterns of bacterioplankton composition in a semi-intensive European seabass (Dicentrarchus labrax) aquaculture system. Aquaculture 490, 240–250 (2018).
Offret, C. et al. Protective efficacy of a Pseudoalteromonas strain in European abalone, Haliotis tuberculata, infected with Vibrio harveyi ORM4. Probiot. Antimicrob. Proteins 11, 239–247 (2019).
Richards, G. P. et al. Mechanisms for Pseudoalteromonas piscicida-induced killing of vibrios and other bacterial pathogens. Appl. Environ. Microbiol. 83, e00175-e217 (2017).
Google Scholar
Lin, S.-R., Chen, Y.-H., Tseng, F.-J. & Weng, C.-F. The production and bioactivity of prodigiosin: Quo vadis?. Drug Discov. Today 25, 828–836 (2020).
Google Scholar
Vynne, N. G., Månsson, M., Nielsen, K. F. & Gram, L. Bioactivity, chemical profiling, and 16S rRNA-based phylogeny of Pseudoalteromonas strains collected on a global research cruise. Mar. Biotechnol. 13, 1062–1073 (2011).
Google Scholar
Lovejoy, C., Bowman, J. P. & Hallegraeff, G. M. Algicidal effects of a novel marine Pseudoalteromonas isolate (class Proteobacteria, gamma subdivision) on harmful algal bloom species of the genera Chattonella, Gymnodinium, and Heterosigma. Appl. Environ. Microbiol. 64, 2806–2813 (1998).
Google Scholar
Franks, A. et al. Inhibition of fungal colonization by Pseudoalteromonas tunicata provides a competitive advantage during surface colonization. Appl. Environ. Microbiol. 72, 6079–6087 (2006).
Google Scholar
Hjelm, M. et al. Selection and identification of autochthonous potential probiotic bacteria from turbot larvae (Scophthalmus maximus) rearing units. Syst. Appl. Microbiol. 27, 360–371 (2004).
Google Scholar
Sorieul, L. et al. Survival improvement conferred by the Pseudoalteromonas sp. NC201 probiotic in Litopenaeus stylirostris exposed to Vibrio nigripulchritudo infection and salinity stress. Aquaculture 495, 888–898 (2018).
Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI reference sequence (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 33, D501–D504 (2005).
Google Scholar
Yan, Y.-Y., Xia, H.-Q., Yang, H.-L., Hoseinifar, S. H. & Sun, Y.-Z. Effects of dietary live or heat-inactivated autochthonous Bacillus pumilus SE5 on growth performance, immune responses and immune gene expression in grouper Epinephelus coioides. Aquac. Nutr. 22, 698–707 (2016).
Google Scholar
Louvado, A. et al. Humic substances modulate fish bacterial communities in a marine recirculating aquaculture system. Aquaculture 544, 737121 (2021).
Google Scholar
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 1, 5 (2019).
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
Google Scholar
Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 1–17 (2018).
Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. 2019. (2020).
R. Core Team. R: A Language and Environment for Statistical Computing (Version 2120) (R Foundation for Statistical Computing, 2012).
McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).
Google Scholar
Wemheuer, F. et al. Tax4Fun2: Prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environ. Microbiome 15, 11 (2020).
Google Scholar
Setiyono, E. et al. An Indonesian marine bacterium, Pseudoalteromonas rubra, produces antimicrobial prodiginine pigments. ACS Omega 5, 4626–4635 (2020).
Google Scholar
Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: Features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014).
Google Scholar
Bakenhus, I. et al. Composition of total and cell-proliferating bacterioplankton community in early summer in the North Sea—roseobacters are the most active component. Front. Microbiol. 8, 1771 (2017).
Google Scholar
Sieber, C. M. K. et al. Unusual metabolism and hypervariation in the genome of a gracilibacterium (BD1-5) from an oil-degrading community. MBio 10, e02128-e2219 (2022).
Jaffe, A. L., Castelle, C. J., Matheus Carnevali, P. B., Gribaldo, S. & Banfield, J. F. The rise of diversity in metabolic platforms across the Candidate Phyla Radiation. BMC Biol. 18, 69 (2020).
Google Scholar
Williams, H. N. & Piñeiro, S. Ecology of the predatory Bdellovibrio and like organisms. In Predatory Prokaryotes 213–248 (Springer, 2006).
Johnke, J. et al. Multiple micro-predators controlling bacterial communities in the environment. Curr. Opin. Biotechnol. 27, 185–190 (2014).
Google Scholar
Rice, T. D., Williams, H. N. & Turng, B.-F. Susceptibility of bacteria in estuarine environments to autochthonous bdellovibrios. Microb. Ecol. 35, 256–264 (1998).
Google Scholar
Feng, S. et al. Predation by Bdellovibrio bacteriovorus significantly reduces viability and alters the microbial community composition of activated sludge flocs and granules. FEMS Microbiol. Ecol. 93, fix020 (2017).
Duarte, L. N. et al. Bacterial and microeukaryotic plankton communities in a semi-intensive aquaculture system of sea bass (Dicentrarchus labrax): A seasonal survey. Aquaculture 503, 59–69 (2019).
Hu, L. et al. Reclassification of the taxonomic framework of orders cellvibrionales, oceanospirillales, pseudomonadales, and alteromonadales in class gammaproteobacteria through phylogenomic tree analysis. mSystems 5, e00543-e620 (2021).
Garrity, G. M., Bell, J. A. & Lilburn, T. Oceanospirillalesord. Nov. in Bergey’s Manual® of Systematic Bacteriology 270–323 (Springer, 2005).
Thomas, F., Hehemann, J.-H., Rebuffet, E., Czjzek, M. & Michel, G. Environmental and gut bacteroidetes: The food connection. Front. Microbiol. 2, 93 (2011).
Google Scholar
Rajilić-Stojanović, M. & De Vos, W. M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 38, 996–1047 (2014).
Google Scholar
Rosenberg, E. The family Chitinophagaceae. In The Prokaryotes: Other Major Lineages of Bacteria and The Archaea (eds Rosenberg, E. et al.) (Springer, 2014).
Beckmann, A., Hüttel, S., Schmitt, V., Müller, R. & Stadler, M. Optimization of the biotechnological production of a novel class of anti-MRSA antibiotics from Chitinophaga sancti. Microb. Cell Fact. 16, 1–10 (2017).
Loudon, A. H. et al. Interactions between amphibians’ symbiotic bacteria cause the production of emergent anti-fungal metabolites. Front. Microbiol. 5, 441 (2014).
Google Scholar
Taylor, J. D. & Cunliffe, M. Coastal bacterioplankton community response to diatom-derived polysaccharide microgels. Environ. Microbiol. Rep. 9, 151–157 (2017).
Google Scholar
González, J. M. & Whitman, W. B. Oceanospirillum and related genera. In The Prokaryotes: A Handbook on the Biology of Bacteria Volume 6: Proteobacteria: Gamma Subclass (eds Dworkin, M. et al.) 887–915 (Springer, 2006).
Kleindienst, S., Paul, J. H. & Joye, S. B. Using dispersants after oil spills: Impacts on the composition and activity of microbial communities. Nat. Rev. Microbiol. 13, 388–396 (2015).
Google Scholar
Williams, T. J. et al. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ. Microbiol. 15, 1302–1317 (2013).
Google Scholar
Gobet, A. et al. Evolutionary evidence of algal polysaccharide degradation acquisition by Pseudoalteromonas carrageenovora 9T to adapt to macroalgal niches. Front. Microbiol. 10, 2740 (2018).
Beier, S., Rivers, A. R., Moran, M. A. & Obernosterer, I. The transcriptional response of prokaryotes to phytoplankton-derived dissolved organic matter in seawater. Environ. Microbiol. 17, 3466–3480 (2015).
Google Scholar
Müller, O., Seuthe, L., Bratbak, G. & Paulsen, M. L. Bacterial response to permafrost derived organic matter input in an Arctic fjord. Front. Mar. Sci. 5, 263 (2018).
Fernández-Álvarez, C. & Santos, Y. Identification and typing of fish pathogenic species of the genus Tenacibaculum. Appl. Microbiol. Biotechnol. 102, 9973–9989 (2018).
Google Scholar
Wirth, J. S. & Whitman, W. B. Phylogenomic analyses of a clade within the roseobacter group suggest taxonomic reassignments of species of the genera Aestuariivita, Citreicella, Loktanella, Nautella, Pelagibaca, Ruegeria, Thalassobius, Thiobacimonas and Tropicibacter, and the proposal. Int. J. Syst. Evol. Microbiol. 68, 2393–2411 (2018).
Google Scholar
Luo, H. & Moran, M. A. Evolutionary ecology of the marine Roseobacter clade. Microbiol. Mol. Biol. Rev. 78, 573–587 (2014).
Google Scholar
Shahina, M. et al. Luteibaculum oceani gen. nov., sp. Nov., a carotenoid-producing, lipolytic bacterium isolated from surface seawater, and emended description of the genus Owenweeksia Lau et al. 2005. Int. J. Syst. Evol. Microbiol. 63, 4765–4770 (2013).
Google Scholar
Davidov, Y. & Jurkevitch, E. Diversity and evolution of Bdellovibrio-and-like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the Bacteriovorax–Peredibacter clade as Bacteriovoracaceae fam. nov. Int. J. Syst. Evol. Microbiol. 54, 1439–1452 (2004).
Google Scholar
Müller, F. D., Beck, S., Strauch, E. & Linscheid, M. W. Bacterial predators possess unique membrane lipid structures. Lipids 46, 1129–1140 (2011).
Google Scholar
Kandel, P. P., Pasternak, Z., van Rijn, J., Nahum, O. & Jurkevitch, E. Abundance, diversity and seasonal dynamics of predatory bacteria in aquaculture zero discharge systems. FEMS Microbiol. Ecol. 89, 149–161 (2014).
Google Scholar
Cao, H., Wang, H., Yu, J., An, J. & Chen, J. Encapsulated bdellovibrio powder as a potential bio-disinfectant against whiteleg shrimp-pathogenic vibrios. Microorganisms 7, 25 (2019).
Jafarian, N., Sepahi, A. A., Naghavi, N. S., Hosseini, F. & Nowroozi, J. Using autochthonous Bdellovibrio as a predatory bacterium for reduction of Gram-negative pathogenic bacteria in urban wastewater and reuse it. Iran. J. Microbiol. 12, 556–564 (2020).
Google Scholar
Cosgrove, L., McGeechan, P. L., Handley, P. S. & Robson, G. D. Effect of biostimulation and bioaugmentation on degradation of polyurethane buried in soil. Appl. Environ. Microbiol. 76, 810–819 (2010).
Google Scholar
Cruz, A. et al. Microbial remediation of organometals and oil hydrocarbons in the marine environment. In Marine Pollution and Microbial Remediation 41–66 (Springer, 2017).
Zhao, J., Chen, M., Quan, C. S. & Fan, S. D. Mechanisms of quorum sensing and strategies for quorum sensing disruption in aquaculture pathogens. J. Fish Dis. 38, 771–786 (2015).
Google Scholar
Tyc, O., Song, C., Dickschat, J. S., Vos, M. & Garbeva, P. The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol. 25, 280–292 (2017).
Google Scholar
Source: Ecology - nature.com