in

The role of individual variability on the predictive performance of machine learning applied to large bio-logging datasets

  • Tsai, C.-W., Lai, C.-F., Chao, H.-C. & Vasilakos, A. V. Big data analytics: a survey. J. Big Data 2, 21 (2015).

    Google Scholar 

  • Lemoine, F. et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556, 452–456 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Manzoni, C. et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief. Bioinform. 19, 286–302 (2018).

    CAS 

    Google Scholar 

  • Lichtman, J. W., Pfister, H. & Shavit, N. The big data challenges of connectomics. Nat. Neurosci. 17, 1448–1454 (2014).

    CAS 

    Google Scholar 

  • Altaf-Ul-Amin, M., Afendi, F. M., Kiboi, S. K. & Kanaya, S. Systems biology in the context of big data and networks. Biomed. Res. Int. 2014, 428570 (2014).

    Google Scholar 

  • Xia, J., Wang, J. & Niu, S. Research challenges and opportunities for using big data in global change biology. Glob. Change Biol. 26, 6040–6061 (2020).

    ADS 

    Google Scholar 

  • Hindell, M. A. et al. Tracking of marine predators to protect Southern Ocean ecosystems. Nature 580, 87–92 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Hussey, N. E. et al. Ecology. Aquatic animal telemetry: A panoramic window into the underwater world. Science 348, 1255642 (2015).

    Google Scholar 

  • Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).

    Google Scholar 

  • Sherub, S., Fiedler, W., Duriez, O. & Wikelski, M. Bio-logging, new technologies to study conservation physiology on the move: a case study on annual survival of Himalayan vultures. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 203, 531–542 (2017).

    Google Scholar 

  • Nathan, R. et al. Big-data approaches lead to an increased understanding of the ecology of animal movement. Science 375, eabg1780 (2022).

    CAS 

    Google Scholar 

  • Wilson, R. P. et al. Estimates for energy expenditure in free-living animals using acceleration proxies: A reappraisal. J. Anim. Ecol. 89, 161–172 (2020).

    Google Scholar 

  • Patterson, A., Gilchrist, H. G., Chivers, L., Hatch, S. & Elliott, K. A comparison of techniques for classifying behavior from accelerometers for two species of seabird. Ecol. Evol. 9, 3030–3045 (2019).

    Google Scholar 

  • Masello, J. F. et al. How animals distribute themselves in space: energy landscapes of Antarctic avian predators. Mov. Ecol. 9, 24 (2021).

    Google Scholar 

  • Shepard, E. L. C. et al. Energy landscapes shape animal movement ecology. Am. Nat. 182, 298–312 (2013).

    Google Scholar 

  • Elliott, K. H., Le Vaillant, M., Kato, A., Speakman, J. R. & Ropert-Coudert, Y. Accelerometry predicts daily energy expenditure in a bird with high activity levels. Biol. Lett. 9, 20120919 (2013).

    Google Scholar 

  • Nickel, B. A., Suraci, J. P., Nisi, A. C. & Wilmers, C. C. Energetics and fear of humans constrain the spatial ecology of pumas. Proc. Natl. Acad. Sci. USA 118, e2004592118 (2021).

  • Eisaguirre, J. M., Booms, T. L., Barger, C. P., Lewis, S. B. & Breed, G. A. Novel step selection analyses on energy landscapes reveal how linear features alter migrations of soaring birds. J. Anim. Ecol. 89, 2567–2583 (2020).

    Google Scholar 

  • Wittemyer, G., Northrup, J. M. & Bastille-Rousseau, G. Behavioural valuation of landscapes using movement data. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180046 (2019).

    Google Scholar 

  • Chimienti, M. et al. The use of an unsupervised learning approach for characterizing latent behaviors in accelerometer data. Ecol. Evol. 6, 727–741 (2016).

    Google Scholar 

  • Hounslow, J. L. et al. Assessing the effects of sampling frequency on behavioural classification of accelerometer data. J. Exp. Mar. Bio. Ecol. 512, 22–30 (2019).

    Google Scholar 

  • Glass, T. W., Breed, G. A., Robards, M. D., Williams, C. T. & Kielland, K. Accounting for unknown behaviors of free-living animals in accelerometer-based classification models: Demonstration on a wide-ranging mesopredator. Ecol. Inf. 60, 101152 (2020).

    Google Scholar 

  • Wang, Y. et al. Movement, resting, and attack behaviors of wild pumas are revealed by tri-axial accelerometer measurements. Mov. Ecol. 3, 2 (2015).

    Google Scholar 

  • Chakravarty, P., Cozzi, G., Ozgul, A. & Aminian, K. A novel biomechanical approach for animal behaviour recognition using accelerometers. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13172 (2019).

    Article 

    Google Scholar 

  • Clarke, T. M. et al. Using tri-axial accelerometer loggers to identify spawning behaviours of large pelagic fish. Mov. Ecol. 9, 26 (2021).

    Google Scholar 

  • Zhang, J., O’Reilly, K. M., Perry, G. L. W., Taylor, G. A. & Dennis, T. E. Extending the functionality of behavioural change-point analysis with k-Means clustering: a case study with the little penguin (Eudyptula minor). PLoS ONE 10, e0122811 (2015).

    Google Scholar 

  • Korpela, J. et al. Machine learning enables improved runtime and precision for bio-loggers on seabirds. Commun. Biol. 3, 633 (2020).

    Google Scholar 

  • Jeantet, L. et al. Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology. R. Soc. Open Sci. 7, 200139 (2020).

    ADS 

    Google Scholar 

  • Wang, G. Machine learning for inferring animal behavior from location and movement data. Ecol. Inf. 49, 69–76 (2019).

    Google Scholar 

  • Dunford, C. E. et al. Surviving in steep terrain: a lab-to-field assessment of locomotor costs for wild mountain lions (Puma concolor). Mov. Ecol. 8, 34 (2020).

    Google Scholar 

  • Jeanniard-du-Dot, T., Guinet, C., Arnould, J. P. Y., Speakman, J. R. & Trites, A. W. Accelerometers can measure total and activity-specific energy expenditures in free-ranging marine mammals only if linked to time-activity budgets. Funct. Ecol. 31, 377–386 (2017).

    Google Scholar 

  • Hicks, O. et al. Acceleration predicts energy expenditure in a fat, flightless, diving bird. Sci. Rep. 10, 21493 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Dentinger, J. E. et al. A probabilistic framework for behavioral identification from animal-borne accelerometers. Ecol. Model. 464, 109818 (2022).

    Google Scholar 

  • Chakravarty, P., Maalberg, M., Cozzi, G., Ozgul, A. & Aminian, K. Behavioural compass: animal behaviour recognition using magnetometers. Mov. Ecol. 7, 28 (2019).

    Google Scholar 

  • Hammond, T. T., Palme, R. & Lacey, E. A. Ecological specialization, variability in activity patterns and response to environmental change. Biol. Lett. 14, 20180115 (2018).

    Google Scholar 

  • Lynch, H. J. & LaRue, M. A. First global census of the Adélie Penguin. Auk 131, 457–466 (2014).

    Google Scholar 

  • Riaz, J., Bestley, S., Wotherspoon, S., Freyer, J. & Emmerson, L. From trips to bouts to dives: temporal patterns in the diving behaviour of chick-rearing Adélie penguins East Antarctica. Mar. Ecol. Prog. Ser. 654, 177–194 (2020).

    ADS 

    Google Scholar 

  • Cherel, Y. Isotopic niches of emperor and Adélie penguins in Adélie Land, Antarctica. Mar. Biol. 154, 813–821 (2008).

    Google Scholar 

  • Little Penguin (Eudyptula minor) – BirdLife species factsheet. at <http://datazone.birdlife.org/species/factsheet/little-penguin-eudyptula-minor/details>

  • Carroll, G., Harcourt, R., Pitcher, B. J., Slip, D. & Jonsen, I. Recent prey capture experience and dynamic habitat quality mediate short-term foraging site fidelity in a seabird. Proc. Biol. Sci. 285, 20180788 (2018).

    Google Scholar 

  • Meyer, X. et al. Oceanic thermal structure mediates dive sequences in a foraging seabird. Ecol. Evol. 10, 6610–6622 (2020).

    Google Scholar 

  • Cavallo, C. et al. Quantifying prey availability using the foraging plasticity of a marine predator, the little penguin. Funct. Ecol. https://doi.org/10.1111/1365-2435.13605 (2020).

    Article 

    Google Scholar 

  • Ropert-Coudert, Y., Chiaradia, A. & Kato, A. An exceptionally deep dive by a Little Penguin Eudyptula minor. Mar. Ornithol 34, 71–74 (2006).

    Google Scholar 

  • Ropert-Coudert, Y., Kato, A., Wilson, R. P. & Cannell, B. Foraging strategies and prey encounter rate of free-ranging Little Penguins. Mar. Biol. 149, 139–148 (2006).

    Google Scholar 

  • Rodríguez, A., Chiaradia, A., Wasiak, P., Renwick, L. & Dann, P. Waddling on the dark side: ambient light affects attendance behavior of little penguins. J. Biol. Rhythms 31, 194–204 (2016).

    Google Scholar 

  • Ropert-Coudert, Y. et al. Happy feet in a hostile world? the future of penguins depends on proactive management of current and expected threats. Front. Mar. Sci. 6, 248 (2019).

    Google Scholar 

  • Shuert, C. R., Pomeroy, P. P. & Twiss, S. D. Assessing the utility and limitations of accelerometers and machine learning approaches in classifying behaviour during lactation in a phocid seal. Anim. Biotelemetry 6, 14 (2018).

    Google Scholar 

  • Dickinson, E. R. et al. Limitations of using surrogates for behaviour classification of accelerometer data: refining methods using random forest models in Caprids. Mov. Ecol. 9, 28 (2021).

    Google Scholar 

  • Conway, A. M., Durbach, I. N., McInnes, A. & Harris, R. N. Frame-by-frame annotation of video recordings using deep neural networks. Ecosphere 12, e03384 (2021).

    Google Scholar 

  • Ravindran, S. Five ways deep learning has transformed image analysis. Nature 609, 864–866 (2022).

    ADS 
    CAS 

    Google Scholar 

  • Del Caño, M. et al. Fine-scale body and head movements allow to determine prey capture events in the Magellanic Penguin (Spheniscus magellanicus). Mar. Biol. 168, 84 (2021).

    Google Scholar 

  • Johnson, J. M. & Khoshgoftaar, T. M. Survey on deep learning with class imbalance. J. Big Data 6, 27 (2019).

    Google Scholar 

  • Hazen, E. L. et al. Marine top predators as climate and ecosystem sentinels. Front. Ecol. Environ. 17, 565–574 (2019).

    Google Scholar 

  • Sánchez, S. et al. Within-colony spatial segregation leads to foraging behaviour variation in a seabird. Mar. Ecol. Prog. Ser. 606, 215–230 (2018).

    ADS 

    Google Scholar 

  • Patrick, S. C., Martin, J. G. A., Ummenhofer, C. C., Corbeau, A. & Weimerskirch, H. Albatrosses respond adaptively to climate variability by changing variance in a foraging trait. Glob. Change Biol. https://doi.org/10.1111/gcb.15735 (2021).

    Article 

    Google Scholar 

  • Bonar, M. et al. Geometry of the ideal free distribution: individual behavioural variation and annual reproductive success in aggregations of a social ungulate. Ecol. Lett. 23, 1360–1369 (2020).

    Google Scholar 

  • Michelot, C., Kato, A., Raclot, T. & Ropert-Coudert, Y. Adélie penguins foraging consistency and site fidelity are conditioned by breeding status and environmental conditions. PLoS ONE 16, e0244298 (2021).

    CAS 

    Google Scholar 

  • Mahoney, P. J. et al. Navigating snowscapes: scale-dependent responses of mountain sheep to snowpack properties. Ecol. Appl. 28, 1715–1729 (2018).

    Google Scholar 

  • Watanabe, Y. Y., Ito, K., Kokubun, N. & Takahashi, A. Foraging behavior links sea ice to breeding success in Antarctic penguins. Sci. Adv. 6, eaba4828 (2020).

    ADS 

    Google Scholar 

  • Lescroël, A. et al. Working less to gain more: when breeding quality relates to foraging efficiency. Ecology 91, 2044–2055 (2010).

    Google Scholar 

  • Zimmer, I., Ropert-Coudert, Y., Kato, A., Ancel, A. & Chiaradia, A. Does foraging performance change with age in female little penguins (Eudyptula minor)?. PLoS ONE 6, e16098 (2011).

    ADS 
    CAS 

    Google Scholar 

  • Hertel, A. G., Royauté, R., Zedrosser, A. & Mueller, T. Biologging reveals individual variation in behavioural predictability in the wild. J. Anim. Ecol. 90, 723–737 (2021).

    Google Scholar 

  • Dickinson, E. R., Stephens, P. A., Marks, N. J., Wilson, R. P. & Scantlebury, D. M. Best practice for collar deployment of tri-axial accelerometers on a terrestrial quadruped to provide accurate measurement of body acceleration. Anim. Biotelemetry 8, 9 (2020).

    Google Scholar 

  • Garde, B. et al. Ecological inference using data from accelerometers needs careful protocols. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13804 (2022).

    Article 

    Google Scholar 

  • Watanabe, Y. Y., Ito, M. & Takahashi, A. Testing optimal foraging theory in a penguin-krill system. Proc. Biol. Sci. 281, 20132376 (2014).

    Google Scholar 

  • Grémillet, D. et al. Energetic fitness: Field metabolic rates assessed via 3D accelerometry complement conventional fitness metrics. Funct. Ecol. 32, 1203–1213 (2018).

    Google Scholar 

  • Chimienti, M. et al. Quantifying behavior and life-history events of an Arctic ungulate from year-long continuous accelerometer data. Ecosphere 12, e03565 (2021).

    Google Scholar 

  • Sutton, G. J., Botha, J. A., Speakman, J. R. & Arnould, J. P. Y. Validating accelerometry-derived proxies of energy expenditure using the doubly-labelled water method in the smallest penguin species. Biol. Open 10, bio055475 (2021).

    Google Scholar 

  • Pagano, A. M. & Williams, T. M. Estimating the energy expenditure of free-ranging polar bears using tri-axial accelerometers: A validation with doubly labeled water. Ecol. Evol. 9, 4210–4219 (2019).

    Google Scholar 

  • Ballance, L. T., Ainley, D. G., Ballard, G. & Barton, K. An energetic correlate between colony size and foraging effort in seabirds, an example of the Adélie penguin Pygoscelis adeliae. J. Avian Biol. 40, 279–288 (2009).

    Google Scholar 

  • Wilson, R. P. et al. Long-term attachment of transmitting and recording devices to penguins and other seabirds. Wildl. Soc. Bull. 25, 101–106 (1997).

    Google Scholar 

  • Shepard, E. L. C. et al. Identification of animal movement patterns using tri-axial accelerometry. Endanger. Species Res. 10, 47–60 (2008).

    ADS 

    Google Scholar 

  • Kato, A., Ropert-Coudert, Y., Grémillet, D. & Cannell, B. Locomotion and foraging strategy in foot-propelled and wing-propelled shallow-diving seabirds. Mar. Ecol. Prog. Ser. 308, 293–301 (2006).

    ADS 

    Google Scholar 

  • Team, R. C. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://url.org/www.R-project.org/ (2021).

  • Ainley, D. The Adélie Penguin: Bellwether of Climate Change (New York: Columbia University Press) (2006).

  • Langrognet, F. et al. Rmixmod: Classification with Mixture Modelling. (2020).

  • Bishop, C. M. Pattern Recognition and Machine Learning. Springer Science+Business Media, LLC, New
    York, NY. (2006).

  • Amélineau, F. et al. Intra- and inter-individual changes in little penguin diving and isotopic composition over the breeding season. Mar. Biol. 168, 62 (2021).

    Google Scholar 

  • Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).

    Google Scholar 

  • Kuhn, M. & Wickham, H. Tidymodels: a collection of packages for modeling and machine learning using tidyverse principles. https://www.tidymodels.org (2020).

  • Wright, M. N. & Ziegler, A. Ranger : A fast implementation of random forests for high dimensional data in C++ andR. J. Stat. Softw. 77, 1–17 (2017).

    Google Scholar 


  • Source: Ecology - nature.com

    Earth can regulate its own temperature over millennia, new study finds

    On batteries, teaching, and world peace