in

Senescence of the immune defences and reproductive trade-offs in females of the mealworm beetle, Tenebrio molitor

  • Williams, G. C. Natural selection, the costs of reproduction, and a refinement of lack’s principle. Am. Nat. 100, 687–690 (1966).

    Google Scholar 

  • Stearns, S. C. The evolution of life histories. (Oxford University Press, 1992).

  • Kirkwood, T. B. L. Evolution of ageing. Nature 270, 301–304 (1977).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Partridge, L., Prowse, N. & Pignatelli, P. Another set of responses and correlated responses to selection on age at reproduction in Drosophila melanogaster. Proc. R. Soc. B. 266, 255–261 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Metcalfe, N. Growth versus lifespan: Perspectives from evolutionary ecology. Exp. Gerontol. 38, 935–940 (2003).

    PubMed 

    Google Scholar 

  • Lee, W.-S., Monaghan, P. & Metcalfe, N. B. Experimental demonstration of the growth rate–lifespan trade-off. Proc. R. Soc. B. 280, 20122370 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lemaître, J.-F. et al. Early-late life trade-offs and the evolution of ageing in the wild. Proc. R. Soc. B. 282, 20150209 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jehan, C., Sabarly, C., Rigaud, T. & Moret, Y. Late-life reproduction in an insect: Terminal investment, reproductive restraint or senescence. J. Anim. Ecol. 90, 282–297 (2021).

    PubMed 

    Google Scholar 

  • Pawelec, G. Age and immunity: What is “immunosenescence”?. Exp. Gerontol. 105, 4–9 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Schwenke, R. A., Lazzaro, B. P. & Wolfner, M. F. Reproduction–immunity trade-offs in insects. Annu. Rev. Entomol. 61, 239–256 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Maklakov, A. A. & Chapman, T. Evolution of ageing as a tangle of trade-offs: Energy versus function. Proc. R. Soc. B. 286, 20191604 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hamel, S. et al. Fitness costs of reproduction depend on life speed: empirical evidence from mammalian populations: Fitness costs of reproduction in mammals. Ecol. Lett. 13, 915–935 (2010).

    PubMed 

    Google Scholar 

  • Graham, A. L., Allen, J. E. & Read, A. F. Evolutionary causes and consequences of immunopathology. Annu. Rev. Ecol. Evol. Syst. 36, 373–397 (2005).

    Google Scholar 

  • Sorci, G. & Faivre, B. Inflammation and oxidative stress in vertebrate host–parasite systems. Phil. Trans. R. Soc. B. 364, 71–83 (2009).

    PubMed 

    Google Scholar 

  • Ashley, N. T., Weil, Z. M. & Nelson, R. J. Inflammation: Mechanisms, costs, and natural variation. Annu. Rev. Ecol. Evol. Syst. 43, 385–406 (2012).

    Google Scholar 

  • Babin, A., Moreau, J. & Moret, Y. Storage of carotenoids in crustaceans as an adaptation to modulate immunopathology and optimize immunological and life history strategies. BioEssays 41, 1800254 (2019).

    Google Scholar 

  • Vasto, S. et al. Inflammatory networks in ageing, age-related diseases and longevity. Mech. Ageing Dev. 128, 83–91 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Finch, C. E. & Crimmins, E. M. Inflammatory exposure and historical changes in human life-spans. Science 305, 1736–1739 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Licastro, F. et al. Innate immunity and inflammation in ageing: A key for understanding age-related diseases. Immun. Ageing 2, 8 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pawelec, G., Goldeck, D. & Derhovanessian, E. Inflammation, ageing and chronic disease. Curr. Opin. Immunol. 29, 23–28 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Pursall, E. R. & Rolff, J. Immune responses accelerate ageing: Proof-of-principle in an insect model. PLoS ONE 6, e19972 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khan, I., Agashe, D. & Rolff, J. Early-life inflammation, immune response and ageing. Proc. R. Soc. B. 284, 20170125 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vigneron, A., Jehan, C., Rigaud, T. & Moret, Y. Immune defenses of a beneficial pest: The mealworm beetle, Tenebrio molitor. Front. Physiol. 10, 138 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jehan, C., Chogne, M., Rigaud, T. & Moret, Y. Sex-specific patterns of senescence in artificial insect populations varying in sex-ratio to manipulate reproductive effort. BMC Evol. Biol. 20, 18 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jehan, C., Sabarly, C., Rigaud, T. & Moret, Y. Age-specific fecundity under pathogenic threat in an insect: Terminal investment versus reproductive restraint. J. Anim. Ecol. 91, 101–111 (2022).

    PubMed 

    Google Scholar 

  • Chung, K.-H. & Moon, M.-J. Fine structure of the hemopoietic tissues in the mealworm beetle, Tenebrio molitor. Entomol. Res. 34, 131–138 (2004).

    Google Scholar 

  • Urbański, A., Adamski, Z. & Rosiński, G. Developmental changes in haemocyte morphology in response to Staphylococcus aureus and latex beads in the beetle Tenebrio molitor L.. Micron 104, 8–20 (2018).

    PubMed 

    Google Scholar 

  • Vommaro, M. L., Kurtz, J. & Giglio, A. Morphological characterisation of haemocytes in the mealworm beetle Tenebrio molitor (Coleoptera, Tenebrionidae). Insects 12, 423 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Söderhäll, K. & Cerenius, L. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr. Opin. Immunol. 10, 23–28 (1998).

    PubMed 

    Google Scholar 

  • Siva-Jothy, M. T., Moret, Y. & Rolff, J. Insect immunity: an evolutionary ecology perspective. in Advances in Insect Physiology vol. 32 1–48 (Elsevier, 2005).

  • Nappi, A. J. & Ottaviani, E. Cytotoxicity and cytotoxic molecules in invertebrates. BioEssays 22, 469–480 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Sadd, B. M. & Siva-Jothy, M. T. Self-harm caused by an insect’s innate immunity. Proc. R. Soc. B. 273, 2571–2574 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Daukšte, J., Kivleniece, I., Krama, T., Rantala, M. J. & Krams, I. Senescence in immune priming and attractiveness in a beetle: Immunosenescence in a beetle. J. Evol. Biol. 25, 1298–1304 (2012).

    PubMed 

    Google Scholar 

  • Krams, I. et al. Trade-off between cellular immunity and life span in mealworm beetles Tenebrio molitor. Curr. Zool. 59, 340–346 (2013).

    Google Scholar 

  • Moon, H. J., Lee, S. Y., Kurata, S., Natori, S. & Lee, B. L. Purification and molecular cloning of cDNA for an inducible antibacterial protein from larvae of the coleopteran, Tenebrio molitor. J. Biochem. 116, 53–58 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, Y. J. et al. Structure and expression of the tenecin 3 gene in Tenebrio molitor. Biochem. Biophys. Res. Comm. 218, 6–11 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Kim, D. H. et al. Bacterial expression of tenecin 3, an insect antifungal protein isolated from Tenebrio molitor, and its efficient purification. Mol. Cells 8, 786–789 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Roh, K.-B. et al. Proteolytic cascade for the activation of the insect toll pathway induced by the fungal cell wall component. J. Biol. Chem. 284, 19474–19481 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, J.-W. et al. Beetle Immunity. in Invertebrate Immunity (ed. Söderhäll, K.) vol. 708 163–180 (Springer US, 2010).

  • Chae, J.-H. et al. Purification and characterization of tenecin 4, a new anti-Gram-negative bacterial peptide, from the beetle Tenebrio molitor. Dev. Comp. Immunol. 36, 540–546 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Haine, E. R., Pollitt, L. C., Moret, Y., Siva-Jothy, M. T. & Rolff, J. Temporal patterns in immune responses to a range of microbial insults (Tenebrio molitor). J. Insect Physiol. 54, 1090–1097 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Dhinaut, J., Chogne, M. & Moret, Y. Immune priming specificity within and across generations reveals the range of pathogens affecting evolution of immunity in an insect. J. Anim. Ecol. 87, 448–463 (2018).

    PubMed 

    Google Scholar 

  • Hoffmann, J. A., Reichhart, J.-M. & Hetru, C. Innate immunity in higher insects. Curr. Opin. Immunol. 8, 8–13 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Moret, Y. Explaining variable costs of the immune response: selection for specific versus non-specific immunity and facultative life history change. Oikos 102, 213–216 (2003).

    Google Scholar 

  • Khan, I., Prakash, A. & Agashe, D. Immunosenescence and the ability to survive bacterial infection in the red flour beetle Tribolium castaneum. J. Anim. Ecol. 85, 291–301 (2016).

    PubMed 

    Google Scholar 

  • Rolff, J. Effects of age and gender on immune function of dragonflies (Odonata, Lestidae) from a wild population. Can. J. Zool. 79, 2176–2180 (2001).

    Google Scholar 

  • Doums, C., Moret, Y., Benelli, E. & Schmid-Hempel, P. Senescence of immune defence in Bombus workers. Ecol. Entomol. 27, 138–144 (2002).

    Google Scholar 

  • Schmid, M. R., Brockmann, A., Pirk, C. W. W., Stanley, D. W. & Tautz, J. Adult honeybees (Apis mellifera L.) abandon hemocytic, but not phenoloxidase-based immunity. J. Insect Physiol. 54, 439–444 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Moret, Y. & Schmid-Hempel, P. Immune responses of bumblebee workers as a function of individual and colony age: senescence versus plastic adjustment of the immune function. Oikos 118, 371–378 (2009).

    Google Scholar 

  • Armitage, S. A. O. & Boomsma, J. J. The effects of age and social interactions on innate immunity in a leaf-cutting ant. J. Insect Physiol. 56, 780–787 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Korner, P. & Schmid-Hempel, P. In vivo dynamics of an immune response in the bumble bee Bombus terrestris. J. Invert. Pathol. 87, 59–66 (2004).

    CAS 

    Google Scholar 

  • Li, T., Yan, D., Wang, X., Zhang, L. & Chen, P. Hemocyte changes during immune melanization in Bombyx Mori infected with Escherichia coli. Insects 10, 301 (2019).

    PubMed Central 

    Google Scholar 

  • Chase, M. R., Raina, K., Bruno, J. & Sugumaran, M. Purification, characterization and molecular cloning of prophenoloxidases from Sarcophaga bullata. Insect Biochem. Mol. Biol. 30, 953–967 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Kanost, M. R. & Gorman, M. J. Phenoloxidases in insect immunity. in Insect Immunology 69–96 (Elsevier, 2008).

  • Sadd, B. M. et al. Modulation of sexual signalling by immune challenged male mealworm beetles (Tenebrio molitor L.): Evidence for terminal investment and dishonesty. J. Evol. Biol. 19, 321–325 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Gálvez, D. & Chapuisat, M. Immune priming and pathogen resistance in ant queens. Ecol. Evol. 4, 1761–1767 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Armitage, S. A. O. & Siva-Jothy, M. T. Immune function responds to selection for cuticular colour in Tenebrio molitor. Heredity 94, 650–656 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Armitage, S. A. O., Thompson, J. J. W., Rolff, J. & Siva-Jothy, M. T. Examining costs of induced and constitutive immune investment in Tenebrio molitor. J. Evol. Biol. 16, 1038–1044 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Kokoza, V. A. et al. Transcriptional regulation of the mosquito vitellogenin gene via a blood meal-triggered cascade. Gene 274, 47–65 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Isaac, P. G. & Bownes, M. Ovarian and fat-body vitellogenin synthesis in Drosophila melanogaster. Europ. J. Biochem. 123, 527–534 (2005).

    Google Scholar 

  • Hoffmann, J. A. The immune response of Drosophila. Nature 426, 33–38 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tzou, P. et al. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13, 737–748 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Haine, E. R., Moret, Y., Siva-Jothy, M. T. & Rolff, J. Antimicrobial defense and persistent infection in insects. Science 322, 1257–1259 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Moret, Y. & Siva-Jothy, M. T. Adaptive innate immunity? Responsive-mode prophylaxis in the mealworm beetle, Tenebrio molitor. Proc. R. Soc. B. 270, 2475–2480 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Du Rand, N. & Laing, M. D. Determination of insecticidal toxicity of three species of entomopathogenic spore-forming bacterial isolates against Tenebrio molitor L. (Coleoptera: Tenebrionidae). Afr. J. Microbiol. Res. 5, 2222–2228 (2011).

    Google Scholar 

  • Jurat-Fuentes, J. L. & Jackson, T. Bacterial entomopathogens. In Insect Pathology 2nd edn (eds Kaya, H. & Vera, F.) 265–349 (Elsevier Academic Press, Cambridge, Mass, 2012).

    Google Scholar 

  • Dhinaut, J., Balourdet, A., Teixeira, M., Chogne, M. & Moret, Y. A dietary carotenoid reduces immunopathology and enhances longevity through an immune depressive effect in an insect model. Sci. Rep. 7, 12429 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moreau, J., Martinaud, G., Troussard, J.-P., Zanchi, C. & Moret, Y. Trans-generational immune priming is constrained by the maternal immune response in an insect. Oikos 121, 1828–1832 (2012).

    Google Scholar 

  • Lee, H. S. et al. The pro-phenoloxidase of coleopteran insect, Tenebrio molitor, larvae was activated during cell clump/cell adhesion of insect cellular defense reactions. FEBS Lett. 444, 255–259 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Zanchi, C., Troussard, J.-P., Martinaud, G., Moreau, J. & Moret, Y. Differential expression and costs between maternally and paternally derived immune priming for offspring in an insect. J. Anim. Ecol. 80, 1174–1183 (2011).

    PubMed 

    Google Scholar 

  • Moret, Y. ‘Trans-generational immune priming’: Specific enhancement of the antimicrobial immune response in the mealworm beetle, Tenebrio molitor. Proc. R. Soc. B. 273, 1399–1405 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dubuffet, A. et al. Trans-generational immune priming protects the eggs only against gram-positive bacteria in the mealworm beetle. PLoS Pathog. 11, e1005178 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Earth can regulate its own temperature over millennia, new study finds

    On batteries, teaching, and world peace