Williams, G. C. Natural selection, the costs of reproduction, and a refinement of lack’s principle. Am. Nat. 100, 687–690 (1966).
Stearns, S. C. The evolution of life histories. (Oxford University Press, 1992).
Kirkwood, T. B. L. Evolution of ageing. Nature 270, 301–304 (1977).
Google Scholar
Partridge, L., Prowse, N. & Pignatelli, P. Another set of responses and correlated responses to selection on age at reproduction in Drosophila melanogaster. Proc. R. Soc. B. 266, 255–261 (1999).
Google Scholar
Metcalfe, N. Growth versus lifespan: Perspectives from evolutionary ecology. Exp. Gerontol. 38, 935–940 (2003).
Google Scholar
Lee, W.-S., Monaghan, P. & Metcalfe, N. B. Experimental demonstration of the growth rate–lifespan trade-off. Proc. R. Soc. B. 280, 20122370 (2013).
Google Scholar
Lemaître, J.-F. et al. Early-late life trade-offs and the evolution of ageing in the wild. Proc. R. Soc. B. 282, 20150209 (2015).
Google Scholar
Jehan, C., Sabarly, C., Rigaud, T. & Moret, Y. Late-life reproduction in an insect: Terminal investment, reproductive restraint or senescence. J. Anim. Ecol. 90, 282–297 (2021).
Google Scholar
Pawelec, G. Age and immunity: What is “immunosenescence”?. Exp. Gerontol. 105, 4–9 (2018).
Google Scholar
Schwenke, R. A., Lazzaro, B. P. & Wolfner, M. F. Reproduction–immunity trade-offs in insects. Annu. Rev. Entomol. 61, 239–256 (2016).
Google Scholar
Maklakov, A. A. & Chapman, T. Evolution of ageing as a tangle of trade-offs: Energy versus function. Proc. R. Soc. B. 286, 20191604 (2019).
Google Scholar
Hamel, S. et al. Fitness costs of reproduction depend on life speed: empirical evidence from mammalian populations: Fitness costs of reproduction in mammals. Ecol. Lett. 13, 915–935 (2010).
Google Scholar
Graham, A. L., Allen, J. E. & Read, A. F. Evolutionary causes and consequences of immunopathology. Annu. Rev. Ecol. Evol. Syst. 36, 373–397 (2005).
Sorci, G. & Faivre, B. Inflammation and oxidative stress in vertebrate host–parasite systems. Phil. Trans. R. Soc. B. 364, 71–83 (2009).
Google Scholar
Ashley, N. T., Weil, Z. M. & Nelson, R. J. Inflammation: Mechanisms, costs, and natural variation. Annu. Rev. Ecol. Evol. Syst. 43, 385–406 (2012).
Babin, A., Moreau, J. & Moret, Y. Storage of carotenoids in crustaceans as an adaptation to modulate immunopathology and optimize immunological and life history strategies. BioEssays 41, 1800254 (2019).
Vasto, S. et al. Inflammatory networks in ageing, age-related diseases and longevity. Mech. Ageing Dev. 128, 83–91 (2007).
Google Scholar
Finch, C. E. & Crimmins, E. M. Inflammatory exposure and historical changes in human life-spans. Science 305, 1736–1739 (2004).
Google Scholar
Licastro, F. et al. Innate immunity and inflammation in ageing: A key for understanding age-related diseases. Immun. Ageing 2, 8 (2005).
Google Scholar
Pawelec, G., Goldeck, D. & Derhovanessian, E. Inflammation, ageing and chronic disease. Curr. Opin. Immunol. 29, 23–28 (2014).
Google Scholar
Pursall, E. R. & Rolff, J. Immune responses accelerate ageing: Proof-of-principle in an insect model. PLoS ONE 6, e19972 (2011).
Google Scholar
Khan, I., Agashe, D. & Rolff, J. Early-life inflammation, immune response and ageing. Proc. R. Soc. B. 284, 20170125 (2017).
Google Scholar
Vigneron, A., Jehan, C., Rigaud, T. & Moret, Y. Immune defenses of a beneficial pest: The mealworm beetle, Tenebrio molitor. Front. Physiol. 10, 138 (2019).
Google Scholar
Jehan, C., Chogne, M., Rigaud, T. & Moret, Y. Sex-specific patterns of senescence in artificial insect populations varying in sex-ratio to manipulate reproductive effort. BMC Evol. Biol. 20, 18 (2020).
Google Scholar
Jehan, C., Sabarly, C., Rigaud, T. & Moret, Y. Age-specific fecundity under pathogenic threat in an insect: Terminal investment versus reproductive restraint. J. Anim. Ecol. 91, 101–111 (2022).
Google Scholar
Chung, K.-H. & Moon, M.-J. Fine structure of the hemopoietic tissues in the mealworm beetle, Tenebrio molitor. Entomol. Res. 34, 131–138 (2004).
Urbański, A., Adamski, Z. & Rosiński, G. Developmental changes in haemocyte morphology in response to Staphylococcus aureus and latex beads in the beetle Tenebrio molitor L.. Micron 104, 8–20 (2018).
Google Scholar
Vommaro, M. L., Kurtz, J. & Giglio, A. Morphological characterisation of haemocytes in the mealworm beetle Tenebrio molitor (Coleoptera, Tenebrionidae). Insects 12, 423 (2021).
Google Scholar
Söderhäll, K. & Cerenius, L. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr. Opin. Immunol. 10, 23–28 (1998).
Google Scholar
Siva-Jothy, M. T., Moret, Y. & Rolff, J. Insect immunity: an evolutionary ecology perspective. in Advances in Insect Physiology vol. 32 1–48 (Elsevier, 2005).
Nappi, A. J. & Ottaviani, E. Cytotoxicity and cytotoxic molecules in invertebrates. BioEssays 22, 469–480 (2000).
Google Scholar
Sadd, B. M. & Siva-Jothy, M. T. Self-harm caused by an insect’s innate immunity. Proc. R. Soc. B. 273, 2571–2574 (2006).
Google Scholar
Daukšte, J., Kivleniece, I., Krama, T., Rantala, M. J. & Krams, I. Senescence in immune priming and attractiveness in a beetle: Immunosenescence in a beetle. J. Evol. Biol. 25, 1298–1304 (2012).
Google Scholar
Krams, I. et al. Trade-off between cellular immunity and life span in mealworm beetles Tenebrio molitor. Curr. Zool. 59, 340–346 (2013).
Moon, H. J., Lee, S. Y., Kurata, S., Natori, S. & Lee, B. L. Purification and molecular cloning of cDNA for an inducible antibacterial protein from larvae of the coleopteran, Tenebrio molitor. J. Biochem. 116, 53–58 (1994).
Google Scholar
Lee, Y. J. et al. Structure and expression of the tenecin 3 gene in Tenebrio molitor. Biochem. Biophys. Res. Comm. 218, 6–11 (1996).
Google Scholar
Kim, D. H. et al. Bacterial expression of tenecin 3, an insect antifungal protein isolated from Tenebrio molitor, and its efficient purification. Mol. Cells 8, 786–789 (1998).
Google Scholar
Roh, K.-B. et al. Proteolytic cascade for the activation of the insect toll pathway induced by the fungal cell wall component. J. Biol. Chem. 284, 19474–19481 (2009).
Google Scholar
Park, J.-W. et al. Beetle Immunity. in Invertebrate Immunity (ed. Söderhäll, K.) vol. 708 163–180 (Springer US, 2010).
Chae, J.-H. et al. Purification and characterization of tenecin 4, a new anti-Gram-negative bacterial peptide, from the beetle Tenebrio molitor. Dev. Comp. Immunol. 36, 540–546 (2012).
Google Scholar
Haine, E. R., Pollitt, L. C., Moret, Y., Siva-Jothy, M. T. & Rolff, J. Temporal patterns in immune responses to a range of microbial insults (Tenebrio molitor). J. Insect Physiol. 54, 1090–1097 (2008).
Google Scholar
Dhinaut, J., Chogne, M. & Moret, Y. Immune priming specificity within and across generations reveals the range of pathogens affecting evolution of immunity in an insect. J. Anim. Ecol. 87, 448–463 (2018).
Google Scholar
Hoffmann, J. A., Reichhart, J.-M. & Hetru, C. Innate immunity in higher insects. Curr. Opin. Immunol. 8, 8–13 (1996).
Google Scholar
Moret, Y. Explaining variable costs of the immune response: selection for specific versus non-specific immunity and facultative life history change. Oikos 102, 213–216 (2003).
Khan, I., Prakash, A. & Agashe, D. Immunosenescence and the ability to survive bacterial infection in the red flour beetle Tribolium castaneum. J. Anim. Ecol. 85, 291–301 (2016).
Google Scholar
Rolff, J. Effects of age and gender on immune function of dragonflies (Odonata, Lestidae) from a wild population. Can. J. Zool. 79, 2176–2180 (2001).
Doums, C., Moret, Y., Benelli, E. & Schmid-Hempel, P. Senescence of immune defence in Bombus workers. Ecol. Entomol. 27, 138–144 (2002).
Schmid, M. R., Brockmann, A., Pirk, C. W. W., Stanley, D. W. & Tautz, J. Adult honeybees (Apis mellifera L.) abandon hemocytic, but not phenoloxidase-based immunity. J. Insect Physiol. 54, 439–444 (2008).
Google Scholar
Moret, Y. & Schmid-Hempel, P. Immune responses of bumblebee workers as a function of individual and colony age: senescence versus plastic adjustment of the immune function. Oikos 118, 371–378 (2009).
Armitage, S. A. O. & Boomsma, J. J. The effects of age and social interactions on innate immunity in a leaf-cutting ant. J. Insect Physiol. 56, 780–787 (2010).
Google Scholar
Korner, P. & Schmid-Hempel, P. In vivo dynamics of an immune response in the bumble bee Bombus terrestris. J. Invert. Pathol. 87, 59–66 (2004).
Google Scholar
Li, T., Yan, D., Wang, X., Zhang, L. & Chen, P. Hemocyte changes during immune melanization in Bombyx Mori infected with Escherichia coli. Insects 10, 301 (2019).
Google Scholar
Chase, M. R., Raina, K., Bruno, J. & Sugumaran, M. Purification, characterization and molecular cloning of prophenoloxidases from Sarcophaga bullata. Insect Biochem. Mol. Biol. 30, 953–967 (2000).
Google Scholar
Kanost, M. R. & Gorman, M. J. Phenoloxidases in insect immunity. in Insect Immunology 69–96 (Elsevier, 2008).
Sadd, B. M. et al. Modulation of sexual signalling by immune challenged male mealworm beetles (Tenebrio molitor L.): Evidence for terminal investment and dishonesty. J. Evol. Biol. 19, 321–325 (2006).
Google Scholar
Gálvez, D. & Chapuisat, M. Immune priming and pathogen resistance in ant queens. Ecol. Evol. 4, 1761–1767 (2014).
Google Scholar
Armitage, S. A. O. & Siva-Jothy, M. T. Immune function responds to selection for cuticular colour in Tenebrio molitor. Heredity 94, 650–656 (2005).
Google Scholar
Armitage, S. A. O., Thompson, J. J. W., Rolff, J. & Siva-Jothy, M. T. Examining costs of induced and constitutive immune investment in Tenebrio molitor. J. Evol. Biol. 16, 1038–1044 (2003).
Google Scholar
Kokoza, V. A. et al. Transcriptional regulation of the mosquito vitellogenin gene via a blood meal-triggered cascade. Gene 274, 47–65 (2001).
Google Scholar
Isaac, P. G. & Bownes, M. Ovarian and fat-body vitellogenin synthesis in Drosophila melanogaster. Europ. J. Biochem. 123, 527–534 (2005).
Hoffmann, J. A. The immune response of Drosophila. Nature 426, 33–38 (2003).
Google Scholar
Tzou, P. et al. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13, 737–748 (2000).
Google Scholar
Haine, E. R., Moret, Y., Siva-Jothy, M. T. & Rolff, J. Antimicrobial defense and persistent infection in insects. Science 322, 1257–1259 (2008).
Google Scholar
Moret, Y. & Siva-Jothy, M. T. Adaptive innate immunity? Responsive-mode prophylaxis in the mealworm beetle, Tenebrio molitor. Proc. R. Soc. B. 270, 2475–2480 (2003).
Google Scholar
Du Rand, N. & Laing, M. D. Determination of insecticidal toxicity of three species of entomopathogenic spore-forming bacterial isolates against Tenebrio molitor L. (Coleoptera: Tenebrionidae). Afr. J. Microbiol. Res. 5, 2222–2228 (2011).
Jurat-Fuentes, J. L. & Jackson, T. Bacterial entomopathogens. In Insect Pathology 2nd edn (eds Kaya, H. & Vera, F.) 265–349 (Elsevier Academic Press, Cambridge, Mass, 2012).
Dhinaut, J., Balourdet, A., Teixeira, M., Chogne, M. & Moret, Y. A dietary carotenoid reduces immunopathology and enhances longevity through an immune depressive effect in an insect model. Sci. Rep. 7, 12429 (2017).
Google Scholar
Moreau, J., Martinaud, G., Troussard, J.-P., Zanchi, C. & Moret, Y. Trans-generational immune priming is constrained by the maternal immune response in an insect. Oikos 121, 1828–1832 (2012).
Lee, H. S. et al. The pro-phenoloxidase of coleopteran insect, Tenebrio molitor, larvae was activated during cell clump/cell adhesion of insect cellular defense reactions. FEBS Lett. 444, 255–259 (1999).
Google Scholar
Zanchi, C., Troussard, J.-P., Martinaud, G., Moreau, J. & Moret, Y. Differential expression and costs between maternally and paternally derived immune priming for offspring in an insect. J. Anim. Ecol. 80, 1174–1183 (2011).
Google Scholar
Moret, Y. ‘Trans-generational immune priming’: Specific enhancement of the antimicrobial immune response in the mealworm beetle, Tenebrio molitor. Proc. R. Soc. B. 273, 1399–1405 (2006).
Google Scholar
Dubuffet, A. et al. Trans-generational immune priming protects the eggs only against gram-positive bacteria in the mealworm beetle. PLoS Pathog. 11, e1005178 (2015).
Google Scholar
Source: Ecology - nature.com