United Nations. Transforming our world: the 2030 Agenda for Sustainable Development. General Assembly https://doi.org/10.5040/9781782257790.part-008 (2015).
Google Scholar
European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Communities L327, 1–72 (2000).
Kelly, R. P. et al. Harnessing DNA to improve environmental management. Science (80-) 344, 1455–1456 (2014).
Google Scholar
Bálint, M. et al. Cryptic biodiversity loss linked to global climate change. Nat. Clim. Chang. 1, 313–318 (2011).
Google Scholar
Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29, 358–367 (2014).
Google Scholar
Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).
Google Scholar
Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).
Google Scholar
Yang, J., Jeppe, K., Pettigrove, V. & Zhang, X. Environmental DNA metabarcoding supporting community assessment of environmental stressors in a field-based sediment microcosm study. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.8b04903 (2018).
Google Scholar
DiBattista, J. D. et al. Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems. Sci. Rep. 10, 1–15 (2020).
Ministry of the Environment. Manual for Water Quality Assessment Method by Aquatic Organisms -Japanese version of average score method-. (2017).
Mayama, S. Taxonomic revisions to the differentiating diatom groups for water quality evaluation and some comments for taxa with new designations. Diatom 15, 1–9 (1994).
Kobayashi, H. & Mayama, S. Evaluation of river water quality by diatoms. Korean J. Phycol. 4, 121–133 (1989).
European Commission. Technical Guidance Document on Risk Assessment Part II. (2003).
Wang, P. et al. Environmental DNA: An emerging tool in ecological assessment. Bull. Environ. Contam. Toxicol. 103, 651–656 (2019).
Google Scholar
Zhang, X. Environmental DNA shaping a new era of ecotoxicological research. Environ. Sci. Technol. 53, 5605–5612 (2019).
Google Scholar
Cristescu, M. E. & Hebert, P. D. N. Uses and misuses of environmental DNA in biodiversity science and conservation. Annu. Rev. Ecol. Evol. Syst. 49, 209–230 (2018).
Ficetola, G. F., Taberlet, P. & Coissac, E. How to limit false positives in environmental DNA and metabarcoding?. Mol. Ecol. Resour. 16, 604–607 (2016).
Google Scholar
Yates, M. C., Derry, A. M. & Cristescu, M. E. Environmental RNA: A revolution in ecological resolution?. Trends Ecol. Evol. 36, 601–609 (2021).
Google Scholar
Veilleux, H. D., Misutka, M. D. & Glover, C. N. Environmental DNA and environmental RNA: Current and prospective applications for biological monitoring. Sci. Total Environ. 782, 146891 (2021).
Google Scholar
Cristescu, M. E. Can Environmental RNA Revolutionize Biodiversity Science?. Trends Ecol. Evol. 34, 694–697 (2019).
Google Scholar
Qian, T., Shan, X., Wang, W. & Jin, X. Effects of Temperature on the Timeliness of eDNA/eRNA: A Case Study of Fenneropenaeus chinensis. Water (Switzerland) 14, 1155 (2022).
Google Scholar
Jo, T., Tsuri, K., Hirohara, T., Yamanaka, H. & Toshiaki Jo, C. Warm temperature and alkaline conditions accelerate environmental RNA degradation. Environ. DNA 00, 1–13 (2022).
Miyata, K. et al. Fish environmental RNA enables precise ecological surveys with high positive predictivity. Ecol. Indic. 128, 107796 (2021).
Littlefair, J. E., Rennie, M. D. & Cristescu, M. E. Environmental nucleic acids: a field-based comparison for monitoring freshwater habitats using eDNA and eRNA. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13671 (2022).
Google Scholar
Broman, E., Bonaglia, S., Norkko, A., Creer, S. & Nascimento, F. J. A. High throughput shotgun sequencing of eRNA reveals taxonomic and derived functional shifts across a benthic productivity gradient. Mol. Ecol. https://doi.org/10.1111/mec.15561 (2020).
Google Scholar
Miya, M. et al. Use of a filter cartridge for filtration of water samples and extraction of environmental DNA. J. Vis. Exp. https://doi.org/10.3791/54741 (2016).
Google Scholar
Oe, S., Sashika, M., Fujimoto, A., Shimozuru, M. & Tsubota, T. Predation impacts of invasive raccoons on rare native species. Sci. Rep. 10, 1–12 (2020).
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
Google Scholar
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
Google Scholar
MLIT (Ministry of Land Infrastructure and Transport). IV Benthic invertebrate. Manual of National Census of the River Environment (River Edition) (in Japanese). http://www.nilim.go.jp/lab/fbg/ksnkankyo/mizukokuweb/system/DownLoad/H28KK_manual_river/H28KK_02.teisei.pdf (2016).
Hleap, J. S., Littlefair, J. E., Steinke, D., Hebert, P. D. N. & Cristescu, M. E. Assessment of current taxonomic assignment strategies for metabarcoding eukaryotes. Mol. Ecol. Resour. 21, 2190–2203 (2021).
Google Scholar
Jones, E. P. et al. Guidance for end users on DNA methods development and project assessment. JNCC Report (2020).
Littlefair, J. E., Rennie, M. D. & Cristescu, M. E. Environmental nucleic acids: A field-based comparison for monitoring freshwater habitats using eDNA and eRNA. Mol. Ecol. Resour. 22, 2928–2940. https://doi.org/10.1111/1755-0998.13671 (2022).
Google Scholar
MLIT (Ministry of Land Infrastructure and Transport). River Environmental Database (in Japanese). http://www.nilim.go.jp/lab/fbg/ksnkankyo/ (2018).
Kitahashi, T. et al. Meiofaunal diversity at a seamount in the Pacific Ocean: A comprehensive study using environmental DNA and RNA. Deep. Res. Part I Oceanogr. Res. Pap. 160, 103253. https://doi.org/10.1016/j.dsr.2020.103253 (2020).
Google Scholar
Brandt, M. I. et al. An assessment of environmental metabarcoding protocols aiming at favoring contemporary biodiversity in inventories of deep-sea communities. Front. Mar. Sci. 7, 234 (2020).
Laroche, O. et al. A cross-taxa study using environmental DNA / RNA metabarcoding to measure biological impacts of off shore oil and gas drilling and production operations. Mar. Pollut. Bull. 127, 97–107 (2018).
Google Scholar
Laroche, O. et al. Metabarcoding monitoring analysis: The pros and cons of using co-extracted environmental DNA and RNA data to assess offshore oil production impacts on benthic communities. PeerJ 5, e3347 (2017).
Google Scholar
Pochon, X. et al. Wanted dead or alive ? Using metabarcoding of environmental DNA and RNA to distinguish living assemblages for biosecurity applications. PLoS ONE 12, 1–19 (2017).
Foley, C. J., Bradley, D. L. & Höök, T. O. A review and assessment of the potential use of RNA: DNA ratios to assess the condition of entrained fish larvae. Ecol. Indic. 60, 346–357 (2016).
Google Scholar
Guardiola, M. et al. Spatio-temporal monitoring of deep-sea communities using metabarcoding of sediment DNA and RNA. PeerJ 4, 1–31 (2016).
Keeley, N., Wood, S. A. & Pochon, X. Development and preliminary validation of a multi-trophic metabarcoding biotic index for monitoring benthic organic enrichment. Ecol. Indic. 85, 1044–1057 (2018).
Google Scholar
Whangbo, J. S. & Hunter, C. P. Environmental RNA interference. Trends Genet. 24, 297–305 (2008).
Google Scholar
Sidova, M., Tomankova, S., Abaffy, P., Kubista, M. & Sindelka, R. Effects of post-mortem and physical degradation on RNA integrity and quality. Biomol. Detect. Quantif. 5, 3–9 (2015).
Google Scholar
Wood, S. A. et al. Release and degradation of environmental DNA and RNA in a marine system. Sci. Total Environ. 704, 135314 (2020).
Google Scholar
Watanabe, T. Picture Book and Ecology of the Freshwater Diatoms (UCHIDA ROKAKUHO PUBLISHING CO., LTD., 2005).
Laroche, O. et al. First evaluation of foraminiferal metabarcoding for monitoring environmental impact from an offshore oil drilling site. Mar. Environ. Res. 120, 225–235 (2016).
Google Scholar
Andruszkiewicz Allan, E. et al. Environmental DNA shedding and decay rates from diverse animal forms and thermal regimes. Environ. DNA 3, 492–514 (2021).
Hajibabaei, M. et al. Watered-down biodiversity? A comparison of metabarcoding results from DNA extracted from matched water and bulk tissue biomonitoring samples. PLoS ONE 14, e0225409 (2019).
Google Scholar
the Orthopterological Society of Japan. Orthoptera of the Japanese archipelago in color (Hokkaido University Press, 2006).
Li, Z. H. et al. Enzymatic alterations and RNA/DNA ratio in intestine of rainbow trout, Oncorhynchus mykiss, induced by chronic exposure to carbamazepine. Ecotoxicology 19, 872–878 (2010).
Google Scholar
Chícharo, M. A. & Chícharo, L. RNA:DNA ratio and other nucleic acid derived indices in marine ecology. Int. J. Mol. Sci. 9, 1453–1471 (2008).
Google Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
Google Scholar
Hebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S. & Francis, C. M. Identification of birds through DNA barcodes. PLoS Biol. 2, e312 (2004).
Google Scholar
Takenaka, M., Yano, K., Suzuki, T. & Tojo, K. Development of novel PCR primer sets for DNA metabarcoding of aquatic insects, and the discovery of some cryptic species. bioRxiv https://doi.org/10.1101/2021.11.05.467390 (2021).
Google Scholar
Elbrecht, V. et al. Testing the potential of a ribosomal 16S marker for DNA metabarcoding of insects. PeerJ 4, 1966 (2016).
Leese, F. et al. Improved freshwater macroinvertebrate detection from environmental DNA through minimized nontarget amplification. Environ. DNA 3, 261–276 (2021).
Google Scholar
Hajibabaei, M., Porter, T. M., Wright, M. & Rudar, J. COI metabarcoding primer choice affects richness and recovery of indicator taxa in freshwater systems. PLoS ONE 14, e0220953 (2019).
Google Scholar
Elbrecht, V. et al. Validation of COI metabarcoding primers for terrestrial arthropods. PeerJ 7, 7745 (2019).
Elbrecht, V. & Leese, F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass-sequence relationships with an innovative metabarcoding protocol. PLoS ONE 10, e0130324 (2015).
Google Scholar
Marquina, D., Andersson, A. F. & Ronquist, F. New mitochondrial primers for metabarcoding of insects, designed and evaluated using in silico methods. Mol. Ecol. Resour. 19, 90–104 (2019).
Google Scholar
Tochigi prefectural government. Results of continuous monitoring and measurement [Water quality] in Japanese. https://www.pref.tochigi.lg.jp/d03/eco/kankyou/hozen/joujikanshikekka-mizu.html (2020).
Emilson, C. E. et al. DNA metabarcoding and morphological macroinvertebrate metrics reveal the same changes in boreal watersheds across an environmental gradient. Sci. Rep. 7, 1–11 (2017).
Google Scholar
Uchida, N., Kubota, K., Aita, S. & Kazama, S. Aquatic insect community structure revealed by eDNA metabarcoding derives indices for environmental assessment. PeerJ 2020, e9176 (2020).
Baird, D. J. & Hajibabaei, M. Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Mol. Ecol. 21, 2039–2044 (2012).
Google Scholar
Source: Ecology - nature.com