in

Minimal climate change impacts on the geographic distribution of Nepeta glomerulosa, medicinal species endemic to southwestern and central Asia

  • Mahmoodi, S. et al. The current and future potential geographical distribution of Nepeta crispa Willd., an endemic, rare and threatened aromatic plant of Iran: Implications for ecological conservation and restoration. Ecol. Indic. 137, 108752 (2022).

    Google Scholar 

  • Behroozian, M., Ejtehadi, H., Peterson, A. T., Memariani, F. & Mesdaghi, M. Climate change influences on the potential distribution of Dianthus polylepis Bien. ex Boiss.(Caryophyllaceae), an endemic species in the Irano-Turanian region. PLoS ONE 15, e0237527 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khanal, S. et al. Potential impact of climate change on the distribution and conservation status of Pterocarpus marsupium, a Near Threatened South Asian medicinal tree species. Ecol. Inform. 70, 101722 (2022).

    Google Scholar 

  • Dyderski, M. K., Paź, S., Frelich, L. E. & Jagodziński, A. M. How much does climate change threaten European forest tree species distributions?. Glob. Change Biol. 24, 1150–1163 (2018).

    ADS 

    Google Scholar 

  • Sanjerehei, M. M. & Rundel, P. W. The impact of climate change on habitat suitability for Artemisia sieberi and Artemisia aucheri (Asteraceae)—A modeling approach. Pol. J. Ecol. 65, 97–109 (2017).

    Google Scholar 

  • Erfanian, M. B., Sagharyan, M., Memariani, F. & Ejtehadi, H. Predicting range shifts of three endangered endemic plants of the Khorassan-Kopet Dagh floristic province under global change. Sci. Rep. 11, 1–13 (2021).

    Google Scholar 

  • Zhang, J. M. et al. Effects of climate change on the distribution of wild Akebia trifoliata. Ecol. Evol. 12, e8714 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, J., Fan, G. & He, Y. Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis. Sci. Total Environ. 698, 134141 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, X.-Q., Kushwaha, S., Saran, S., Xu, J. & Roy, P. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol. Eng. 51, 83–87 (2013).

    CAS 

    Google Scholar 

  • Greiser, C., Hylander, K., Meineri, E., Luoto, M. & Ehrlén, J. Climate limitation at the cold edge: Contrasting perspectives from species distribution modelling and a transplant experiment. Ecography 43, 637–647 (2020).

    Google Scholar 

  • Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).

    PubMed 

    Google Scholar 

  • Thuiller, W. et al. Predicting global change impacts on plant species’ distributions: Future challenges. Plant Ecol. Evol. Syst. 9, 137–152 (2008).

    Google Scholar 

  • Menke, S., Holway, D., Fisher, R. & Jetz, W. Characterizing and predicting species distributions across environments and scales: Argentine ant occurrences in the eye of the beholder. Glob. Ecol. Biogeogr. 18, 50–63 (2009).

    Google Scholar 

  • Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).

    PubMed 

    Google Scholar 

  • Celenk, S., Dirmenci, T., Malyer, H. & Bicakci, A. A palynological study of the genus Nepeta L.(Lamiaceae). Plant Syst. Evol. 276, 105–123 (2008).

    Google Scholar 

  • Zargari, A. Medicinal Plants Vol. 2 (University of Tehran Pub, 1990).

    Google Scholar 

  • Javidnia, K., Miri, R., Rezazadeh, S. R., Soltani, M. & Khosravi, A. R. Essential oil composition of two subspecies of Nepeta glomerulosa Boiss. from Iran. Nat. Prod. Commun. 3, 1934578X0800300530 (2008).

    Google Scholar 

  • Jamzad, Z. Flora of Iran, no 76, Lamiaceae. Res. Inst. For. Rangel. Tehran 76, 542–544 (2012).

    Google Scholar 

  • Talebi, S. M., Nohooji, M. G., Yarmohammadi, M., Azizi, N. & Matsyura, A. Trichomes morphology and density analysis in some Nepeta species of Iran. Mediterr. Bot. 39, 51–62 (2018).

    Google Scholar 

  • Amirmohammadi, F., Azizi, M., Nemati, S. H., Memariani, F. & Murphy, R. Nutlet micro‐morphology of selected species of Nepeta (Lamiaceae) in Iran. Nord. J. Bot. (2019).

  • Jamzad, Z., Chase, M. W., Ingrouille, M., Simmonds, M. S. & Jalili, A. Phylogenetic relationships in Nepeta L.(Lamiaceae) and related genera based on ITS sequence data. Taxon 52, 21–32 (2003).

    Google Scholar 

  • Emami, S. A., Yazdian, R., Arab, A., Sadeghi, M. & Tayarani-Najaran, Z. Anti-melanogenic activity of different extracts from aerial parts of Nepeta glomeruloasin on murine melanoma B16F10 cells. Iran. J. Pharm. Sci. 13, 61–74 (2017).

    Google Scholar 

  • Narimani, R., Moghaddam, M., Ghasemi Pirbalouti, A. & Mojarab, S. Essential oil composition of seven populations belonging to two Nepeta species from Northwestern Iran. Int. J. Food Prop. 20, 2272–2279 (2017).

    CAS 

    Google Scholar 

  • Hosseini, A., Forouzanfar, F. & Rakhshandeh, H. Hypnotic effect of Nepeta glomerulosa on pentobarbital-induced sleep in mice. Jundishapur J. Nat. Pharm. Prod. https://doi.org/10.17795/jjnpp-25063 (2016).

    Article 

    Google Scholar 

  • Layeghhaghighi, M., Hassanpour Asil, M., Abbaszadeh, B., Sefidkon, F. & Matinizadeh, M. Investigation of altitude on morphological traits and essential oil composition of Nepeta pogonosperma Jamzad and Assadi from Alamut region. J. Med. Plants Prod. 6, 35–40 (2017).

    Google Scholar 

  • Sefidkon, F. Essential oil of Nepeta glomerulosa Boiss. from Iran. J. Essent. Oil Res. 13, 422–423 (2001).

    CAS 

    Google Scholar 

  • Djamali, M. et al. Application of the global bioclimatic classification to Iran: Implications for understanding the modern vegetation and biogeography. Ecol. Mediterr. 37, 91–114 (2011).

    Google Scholar 

  • Djamali, M., Brewer, S., Breckle, S. W. & Jackson, S. T. Climatic determinism in phytogeographic regionalization: a test from the Irano-Turanian region, SW and Central Asia. Flora Morphol. Distrib. Funct. Ecol. Plants 207, 237–249 (2012).

    Google Scholar 

  • Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).

    Google Scholar 

  • Escobar, L. E., Lira-Noriega, A., Medina-Vogel, G. & Peterson, A. T. Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: Use of Maxent and NicheA to assure strict model transference. Geospat. Health 9, 221–229 (2014).

    PubMed 

    Google Scholar 

  • Valencia-Rodríguez, D., Jiménez-Segura, L., Rogéliz, C. A. & Parra, J. L. Ecological niche modeling as an effective tool to predict the distribution of freshwater organisms: The case of the Sabaleta Brycon henni (Eigenmann, 1913). PLoS ONE 16, e0247876 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).

    Google Scholar 

  • Peterson, A. T., Cobos, M. E. & Jiménez-García, D. Major challenges for correlational ecological niche model projections to future climate conditions. Ann. N. Y. Acad. Sci. 1429, 66–77 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Google Scholar 

  • Raghavan, R. K., Peterson, A. T., Cobos, M. E., Ganta, R. & Foley, D. Current and future distribution of the lone star tick, Amblyomma americanum (L.)(Acari: Ixodidae) in North America. PLoS ONE 14, e0209082 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muscarella, R. et al. ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205 (2014).

    Google Scholar 

  • Ramírez Villegas, J. & Jarvis, A. Downscaling global circulation model outputs: The delta method decision and policy analysis Working Paper No. 1 (2010).

  • Liu, C., Newell, G. & White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 6, 337–348 (2016).

    PubMed 

    Google Scholar 

  • Austin, M. Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecol. Model. 200, 1–19 (2007).

    Google Scholar 

  • Rahmanian, S., Pouyan, S., Karami, S. & Pourghasemi, H. R. In Computers in Earth and Environmental Sciences 245–254 (Elsevier, 2022).

  • Rahmanian, S., Pourghasemi, H. R., Pouyan, S. & Karami, S. Habitat potential modelling and mapping of Teucrium polium using machine learning techniques. Environ. Monit. Assess. 193, 1–21 (2021).

    Google Scholar 

  • Domroes, M., Kaviani, M. & Schaefer, D. An analysis of regional and intra-annual precipitation variability over Iran using multivariate statistical methods. Theor. Appl. Climatol. 61, 151–159 (1998).

    ADS 

    Google Scholar 

  • Prevéy, J. et al. Greater temperature sensitivity of plant phenology at colder sites: Implications for convergence across northern latitudes. Glob. Change Biol. 23, 2660–2671 (2017).

    ADS 

    Google Scholar 

  • Rousta, I. et al. Impacts of drought on vegetation assessed by vegetation indices and meteorological factors in Afghanistan. Remote Sens. 12, 2433 (2020).

    ADS 

    Google Scholar 

  • Wang, Y. et al. Contrasting effects of temperature and precipitation on vegetation greenness along elevation gradients of the Tibetan Plateau. Remote Sens. 12, 2751 (2020).

    ADS 

    Google Scholar 

  • Zhang, Y. et al. Vegetation change and its relationship with climate factors and elevation on the Tibetan plateau. Int. J. Environ. Res. Public Health 16, 4709 (2019).

    PubMed Central 

    Google Scholar 

  • Vanneste, T. et al. Impact of climate change on alpine vegetation of mountain summits in Norway. Ecol. Res. 32, 579–593 (2017).

    Google Scholar 

  • Rodriguez, C., Navarro, T. & El-Keblawy, A. Covariation in diaspore mass and dispersal patterns in three Mediterranean coastal dunes in southern Spain. Turk. J. Bot. 41, 161–170 (2017).

    Google Scholar 

  • Zona, S. Fruit and seed dispersal of Salvia L.(Lamiaceae): A review of the evidence. Bot. Rev. 83, 195–212 (2017).

    Google Scholar 

  • Ryding, O. Myxocarpy in the Nepetoideae (Lamiaceae) with notes on myxodiaspory in general. Syst. Geogr. Plants 71, 503–514 (2001).

    Google Scholar 

  • Tanaka, K., Ogata, K., Mukai, H., Yamawo, A. & Tokuda, M. Adaptive advantage of myrmecochory in the ant-dispersed herb Lamium amplexicaule (Lamiaceae): Predation avoidance through the deterrence of post-dispersal seed predators. PLoS ONE 10, e0133677 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferreira, P. M. et al. Long-term ecological research in southern Brazil grasslands: Effects of grazing exclusion and deferred grazing on plant and arthropod communities. PLoS ONE 15, e0227706 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    On batteries, teaching, and world peace

    Engineers solve a mystery on the path to smaller, lighter batteries