in

Growth response and mycoremediation of heavy metals by fungus Pleurotus sp.

  • Colpaert, J. V. In Stress in Yeasts and Filamentous Fungi Vol. 27 (eds Avery, S. V. et al.) 157–173 (Elsevier, Academic Press, 2008).

    Chapter 

    Google Scholar 

  • Dalvi, A. A. & Bhalerao, S. A. Response of plants towards heavy metal toxicity: An overview of avoidance, tolerance and uptake mechanism. Ann. Plant Sci. 2, 362–368 (2013).

    Google Scholar 

  • Langer, I. et al. Ectomycorrhizal impact on Zn accumulation of Populus tremula L. grown in metalliferous soil with increasing levels of Zn concentration. Plant Soil 355, 283–297 (2012).

    Article 

    Google Scholar 

  • Agrahar-Murugkar, D. & Subbulakshmi, G. Nutritional value of edible wild mushrooms collected from the Khasi hills of Meghalaya. Food Chem. 89, 599–603 (2005).

    Article 

    Google Scholar 

  • Das, N., Charumathi, D. & Vimala, R. Effect of pretreatment on Cd2+ biosorption by mycelial biomass of Pleurotus florida. Afr. J. Biotechnol. 6, 2555–2558 (2007).

    Article 

    Google Scholar 

  • Dulay, R. M. R. et al. Effects and myco-accumulation of lead (Pb) in five Pleurotus mushrooms. Int. J. Biol. Pharm. Allies Sci. 4, 1664–1677 (2015).

    Google Scholar 

  • Prasad, A. A., Varatharaju, G., Anushri, C. & Dhivyasree, S. Biosorption of lead by Pleurotus florida and Trichoderma viride. Br. Biotechnol. J. 3, 66–78 (2013).

    Article 

    Google Scholar 

  • Tay, C. C. et al. Biosorption of cadmium ions using Pleurotus ostreatus: Growth kinetics, isotherm study and biosorption mechanism. Korean J. Chem. Eng. 28, 825–830 (2011).

    Article 

    Google Scholar 

  • Kulshreshtha, S., Mathur, N. & Bhatnagar, P. Mushroom as a product and their role in mycoremediation. AMB Express 4, 1–7 (2014).

    Article 

    Google Scholar 

  • Khan, I. et al. Mycoremediation of heavy metal (Cd and Cr)-polluted soil through indigenous metallotolerant fungal isolates. Environ. Monit. Assess. 191, 1–11 (2019).

    Google Scholar 

  • Mosa, K. A., Saadoun, I., Kumar, K., Helmy, M. & Dhankher, O. P. Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front. Plant Sci. 7, 303 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Velásquez, L. & Dussan, J. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J. Hazard. Mater. 167, 713–716 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Fawzy, E. M., Abdel-Motaal, F. F. & El-zayat, S. A. Biosorption of heavy metals onto different eco-friendly substrates. J. Toxicol. Environ. Health Sci. 9, 35–44 (2017).

    Google Scholar 

  • Kumar, V. & Dwivedi, S. K. Mycoremediation of heavy metals: Processes, mechanisms, and affecting factors. Environ. Sci. Pollut. Res. 28, 10375–10412 (2021).

    Article 

    Google Scholar 

  • Barros, L., Baptista, P., Estevinho, L. M. & Ferreira, I. C. Bioactive properties of the medicinal mushroom Leucopaxillus giganteus mycelium obtained in the presence of different nitrogen sources. Food Chem. 105, 179–186 (2007).

    Article 

    Google Scholar 

  • Kim, H. G. et al. Phellinus linteus inhibits inflammatory mediators by suppressing redox-based NF-κB and MAPKs activation in lipopolysaccharide-induced RAW 264.7 macrophage. J. Ethnopharmacol. 114, 307–315 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Sarikurkcu, C., Tepe, B. & Yamac, M. Evaluation of the antioxidant activity of four edible mushrooms from the Central Anatolia, Eskisehir–Turkey: Lactarius deterrimus, Suillus collitinus, Boletus edulis, Xerocomus chrysenteron. Bioresour. Technol. 99, 6651–6655 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Giannopolitis, C.N. & Ries, S.K. Superoxide Dismutases II. Purification and quantitative relationship with water-soluble protein in seedlings.Plant Physiol. 59, 315–318 (1977).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dhindsa, R.S., Plumb-Dhindsa, P. & Thorpe, T.A. Leaf senescent: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32, 93–101 (1981).

    Article 

    Google Scholar 

  • Marx, D. H. Ectomycorrhizae as biological deterrents to pathogenic root infections. Annu. Rev. Phytopathol. 10, 429–454 (1972).

    Article 
    PubMed 

    Google Scholar 

  • Calvillo-Medina, R. P. Determination of fungal tolerance index to heavy metals and heavy metal resistance tests. Bio-Protoc. 11, e4218 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ouzounidou, G., Eleftheriou, E. & Karataglis, S. Ecophysical and ultrastructural effects of copper in Thlaspi ochroleucum (Cruciferae). Can. J. Bot. 70, 947–957 (1992).

    Article 

    Google Scholar 

  • Carrillo-González, R., González-Chávez, M. & del Carmen, A. Tolerance to and accumulation of cadmium by the mycelium of the fungi Scleroderma citrinum and Pisolithus tinctorius. Biol. Trace Elem. Res. 146, 388–395 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Mkhize, S. S., Simelane, M. B. C., Gasa, N. L. & Pooe, O. J. Evaluating the antioxidant and heavy metal content of Pleurotus ostreatus mushrooms cultivated using sugar cane agro-waste. Pharmacogn. J. 13, 1–9 (2021).

    Article 

    Google Scholar 

  • Kumar, V. In Microbial Cell Factories (eds Sharma, D. & Saharan, B. S.) 149–174 (CRC Press, 2018).

    Chapter 

    Google Scholar 

  • El-Sayed, M. T., Ezzat, S. M., Taha, A. S. & Ismaiel, A. A. Iron stress response and bioaccumulation potential of three fungal strains isolated from sewage-irrigated soil. J. Appl. Microbiol. 132, 1936–1953 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Li, X. et al. Mechanisms of Cd and Cr removal and tolerance by macrofungus Pleurotus ostreatus HAU-2. J. Hazard. Mater. 330, 1–8 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Chuang, H.-W., Wang, I.-W., Lin, S.-Y. & Chang, Y.-L. Transcriptome analysis of cadmium response in Ganoderma lucidum. FEMS Microbiol. Lett. 293, 205–213 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Jones, D. & Muehlchen, A. Effects of the potentially toxic metals, aluminium, zinc and copper on ectomycorrhizal fungi. J. Environ. Sci. Health A Environ. Sci. Eng. Technol. 29, 949–966 (1994).

    Google Scholar 

  • Tam, P. C. Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza 5, 181–187 (1995).

    Article 

    Google Scholar 

  • Purkayastha, R., Mitra, A. K. & Bhattacharyya, B. Uptake and toxicological effects of some heavy metals on Pleurotus sajor-caju (Fr.) Singer. Ecotoxicol. Environ. Saf. 27, 7–13 (1994).

    Article 
    PubMed 

    Google Scholar 

  • Akkin, N. Mycoremediation by oyster mushroom. Acta Sci. Agric. 5, 47–48 (2021).

    Article 

    Google Scholar 

  • Ogbo, E. & Okhuoya, J. Bio-absorption of some heavy metals by Pleurotus tuber-regium Fr. Singer (an edible mushroom) from crude oil polluted soils amended with fertilizers and cellulosic wastes. Int. J. Soil Sci. 6, 34–48 (2011).

    Article 

    Google Scholar 

  • Brunnert, H. & Zadražil, F. The translocation of mercury and cadmium into the fruiting bodies of six higher fungi. Eur. J. Appl. Microbiol. Biotechnol. 17, 358–364 (1983).

    Article 

    Google Scholar 

  • Singh, V., Singh, M. P. & Mishra, V. Bioremediation of toxic metal ions from coal washery effluent. Desalin. Water Treat. 197, 300–318 (2020).

    Article 

    Google Scholar 

  • Lazarova, N., Krumova, E., Stefanova, T., Georgieva, N. & Angelova, M. The oxidative stress response of the filamentous yeast Trichosporon cutaneum R57 to copper, cadmium and chromium exposure. Biotechnol. Biotechnol. Equip. 28, 855–862 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Engineers solve a mystery on the path to smaller, lighter batteries

    MesopTroph, a database of trophic parameters to study interactions in mesopelagic food webs