Ulrich, Y., Saragosti, J., Tokita, C. K., Tarnita, C. E. & Kronauer, D. J. C. Fitness benefits and emergent division of labour at the onset of group living. Nature 560, 635–638 (2018).
Google Scholar
Duarte, A., Weissing, F. J., Pen, I. & Keller, L. An evolutionary perspective on self-organized division of labor in social insects. Annu Rev. Ecol. Evol. Syst. 42, 91–110 (2011).
Google Scholar
West, S. A. & Cooper, G. A. Division of labour in microorganisms: an evolutionary perspective. Nat. Rev. Microbiol. 14, 716–723 (2016).
Google Scholar
Oster, G. F. & Wilson, E. O. Caste and ecology in the social insects. (Princeton University Press, 1978).
Arnold, K. E., Owens, I. P. F. & Goldizen, A. W. Division of labour within cooperatively breeding groups. Behav 142, 1577–1590 (2005).
Google Scholar
Bruintjes, R. & Taborsky, M. Size-dependent task specialization in a cooperative cichlid in response to experimental variation of demand. Anim. Behav. 81, 387–394 (2011).
Google Scholar
Bergmüller, R. & Taborsky, M. Adaptive behavioural syndromes due to strategic niche specialization. BMC Ecol. 7, 12 (2007).
Google Scholar
Schaller, G. B. The Serengeti lion: a study of predator-prey relations. (University of Chicago press, 2009).
Bonabeau, E., Theraulaz, G. & Deneubourg, J.-L. Quantitative study of the fixed threshold model for the regulation of division of labour in insect societies. Proc. Biol. Sci. 263, 1565–1569 (1996).
Google Scholar
Bonabeau, E. Fixed response thresholds and the regulation of division of labor in insect societies. Bull. Math. Biol. 60, 753–807 (1998).
Google Scholar
Graham, S., Myerscough, M. R., Jones, J. C. & Oldroyd, B. P. Modelling the role of intracolonial genetic diversity on regulation of brood temperature in honey bee (Apis mellifera L.) colonies. Insect Soc. 53, 226–232 (2006).
Google Scholar
Jeanson, R., Fewell, J. H., Gorelick, R. & Bertram, S. M. Emergence of increased division of labor as a function of group size. Behav. Ecol. Sociobiol. 62, 289–298 (2007).
Google Scholar
Gove, R., Hayworth, M., Chhetri, M. & Rueppell, O. Division of labour and social insect colony performance in relation to task and mating number under two alternative response threshold models. Insect. Soc. 56, 319–331 (2009).
Google Scholar
Ulrich, Y. et al. Response thresholds alone cannot explain empirical patterns of division of labor in social insects. PLoS Biol. 19, e3001269 (2021).
Google Scholar
Jeanson, R. & Weidenmüller, A. Interindividual variability in social insects – proximate causes and ultimate consequences. Biol. Rev. 89, 671–687 (2014).
Google Scholar
Toth, A. L. & Robinson, G. E. Worker nutrition and division of labour in honeybees. Anim. Behav. 69, 427–435 (2005).
Google Scholar
Smith, C. R. et al. Nutritional asymmetries are related to division of labor in a queenless ant. PLoS ONE 6, e24011 (2011).
Google Scholar
Bernadou, A. et al. Stress and early experience underlie dominance status and division of labour in a clonal insect. Proc. R. Soc. B 285, 20181468 (2018).
Google Scholar
Bernadou, A., Hoffacker, E., Pable, J. & Heinze, J. Lipid content influences division of labour in a clonal ant. J. Exp. Biol. 223, jeb.219238 (2020).
Google Scholar
Dussutour, A., Poissonnier, L.-A., Buhl, J. & Simpson, S. J. Resistance to nutritional stress in ants: when being fat is advantageous. J. Exp. Biol. 219, 824–833 (2016).
Google Scholar
Blanchard, G. B., Orledge, G. M., Reynolds, S. E. & Franks, N. R. Division of labour and seasonality in the ant Leptothorax albipennis: worker corpulence and its influence on behaviour. Anim. Behav. 59, 723–738 (2000).
Google Scholar
Toth, A. L., Kantarovich, S., Meisel, A. F. & Robinson, G. E. Nutritional status influences socially regulated foraging ontogeny in honey bees. J. Exp. Biol. 208, 4641–4649 (2005).
Google Scholar
Carter, G. G. & Wilkinson, G. S. Food sharing in vampire bats: reciprocal help predicts donations more than relatedness or harassment. Proc. R. Soc. B 280, 20122573 (2013).
Google Scholar
Meurville, Marie-Pierre & LeBoeuf, AdriaC. Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae). Myrmecol N. 31, 1–30 (2021).
Duarte, A., Pen, I., Keller, L. & Weissing, F. J. Evolution of self-organized division of labor in a response threshold model. Behav. Ecol. Sociobiol. 66, 947–957 (2012).
Google Scholar
Moll, K., Federle, W. & Roces, F. The energetics of running stability: costs of transport in grass-cutting ants depend on fragment shape. J. Exp. Biol. 215, 161–168 (2012).
Google Scholar
Ostwald, M. M., Fox, T. P., Harrison, J. F. & Fewell, J. H. Social consequences of energetically costly nest construction in a facultatively social bee. Proc. R. Soc. B 288, 20210033 (2021). rspb.2021.0033.
Google Scholar
Molina, Y. & O’Donnell, S. A developmental test of the dominance-nutrition hypothesis: linking adult feeding, aggression, and reproductive potential in the paperwasp Mischocyttarus mastigophorus. Ethol. Ecol. Evol. 20, 125–139 (2008).
Google Scholar
Fiocca, K. et al. Reproductive physiology corresponds to adult nutrition and task performance in a Neotropical paper wasp: a test of dominance-nutrition hypothesis predictions. Behav. Ecol. Sociobiol. 74, 114 (2020).
Google Scholar
Wcislo, W. T. & Gonzalez, V. H. Social and ecological contexts of trophallaxis in facultatively social sweat bees, Megalopta genalis and M. ecuadoria (Hymenoptera, Halictidae). Insect Soc. 53, 220–225 (2006).
Google Scholar
Gautrais, J., Theraulaz, G., Deneubourg, J.-L. & Anderson, C. Emergent polyethism as a consequence of increased colony size in insect societies. J. Theor. Biol. 215, 363–373 (2002).
Google Scholar
Ferguson-Gow, H., Sumner, S., Bourke, A. F. G. & Jones, K. E. Colony size predicts division of labour in attine ants. Proc. R. Soc. B 281, 20141411 (2014).
Google Scholar
Dornhaus, A., Holley, J.-A. & Franks, N. R. Larger colonies do not have more specialized workers in the ant Temnothorax albipennis. Behav. Ecol. 20, 922–929 (2009).
Google Scholar
Ackermann, M. et al. Self-destructive cooperation mediated by phenotypic noise. Nature 454, 987–990 (2008).
Google Scholar
Dubnau, D. & Losick, R. Bistability in bacteria. Mol. Microbiol 61, 564–572 (2006).
Google Scholar
Honegger, K. & de Bivort, B. Stochasticity, individuality and behavior. Curr. Biol. 28, R8–R12 (2018).
Google Scholar
Schiessl, K. T. et al. Individual- versus group-optimality in the production of secreted bacterial compounds. Evolution 73, 675–688 (2019).
Google Scholar
Elsner, D., Hartfelder, K. & Korb, J. Molecular underpinnings of division of labour among workers in a socially complex termite. Sci. Rep. 11, 18269 (2021).
Google Scholar
Kohlmeier, P., Feldmeyer, B. & Foitzik, S. Vitellogenin-like A–associated shifts in social cue responsiveness regulate behavioral task specialization in an ant. PLoS Biol. 16, e2005747 (2018).
Google Scholar
Morandin, C., Hietala, A. & Helanterä, H. Vitellogenin and vitellogenin-like gene expression patterns in relation to caste and task in the ant Formica fusca. Insect Soc. 66, 519–531 (2019).
Google Scholar
Cooper, G. A. & West, S. A. Division of labour and the evolution of extreme specialization. Nat. Ecol. Evol. 2, 1161–1167 (2018).
Google Scholar
Ferrante, E., Turgut, A. E., Duéñez-Guzmán, E., Dorigo, M. & Wenseleers, T. Evolution of Self-Organized Task Specialization in Robot Swarms. PLoS Comput. Biol. 11, e1004273 (2015).
Google Scholar
West-Eberhard, M.J. Wasp societies as microcosms for the study of development and evolution. in Natural history and evolution of paper-wasps (eds. Turillazzi, S. & West-Eberhard, M. J.) 290–317 (Oxford University Press, 1996).
West-Eberhard, M. J. Flexible strategy and social evolution. in Animal societies: theories and facts (eds. Itō, Y., Brown, J. L. & Kikkawa, J.) 35–51 (Japan Scientific Societies Press, 1987).
Amdam, G. V., Csondes, A., Fondrk, M. K. & Page, R. E. Complex social behaviour derived from maternal reproductive traits. Nature 439, 76–78 (2006).
Google Scholar
Krishnan, J. U., Brahma, A., Chavan, S. K. & Gadagkar, R. Nutrition induced direct fitness for workers in a primitively eusocial wasp. Insect Soc. 68, 319–325 (2021).
Google Scholar
O’Donnell, S. et al. Adult nutrition and reproductive physiology: a stable isotope analysis in a eusocial paper wasp (Mischocyttarus mastigophorus, Hymenoptera: Vespidae). Behav. Ecol. Sociobiol. 72, 86 (2018).
Google Scholar
Salomon, M., Mayntz, D. & Lubin, Y. Colony nutrition skews reproduction in a social spider. Behav. Ecol. 19, 605–611 (2008).
Google Scholar
Hunt, J. H. & Amdam, G. V. Bivoltinism as an antecedent to eusociality in the paper wasp genus Polistes. Science 308, 264–267 (2005).
Google Scholar
Hunt, J. H., Buck, N. A. & Wheeler, D. E. Storage proteins in vespid wasps: characterization, developmental pattern, and occurrence in adults. J. Insect Physiol. 49, 785–794 (2003).
Google Scholar
Hunt, J. H. et al. Differential gene expression and protein abundance evince ontogenetic bias toward castes in a primitively eusocial wasp. PLoS ONE 5, e10674 (2010).
Google Scholar
Smith, C. R., Toth, A. L., Suarez, A. V. & Robinson, G. E. Genetic and genomic analyses of the division of labour in insect societies. Nat. Rev. Genet. 9, 735–748 (2008).
Google Scholar
Sumner, S., Pereboom, J. J. M. & Jordan, W. C. Differential gene expression and phenotypic plasticity in behavioural castes of the primitively eusocial wasp, Polistes canadensis. Proc. R. Soc. B 273, 19–26 (2006).
Google Scholar
Gräff, J., Jemielity, S., Parker, J. D., Parker, K. M. & Keller, L. Differential gene expression between adult queens and workers in the ant Lasius niger. Mol. Ecol. 16, 675–683 (2007).
Google Scholar
Nelson, C. M., Ihle, K. E., Fondrk, M. K., Page, R. E. & Amdam, G. V. The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol. 5, e62 (2007).
Google Scholar
Corona, M. et al. Vitellogenin underwent subfunctionalization to acquire caste and behavioral specific expression in the harvester ant Pogonomyrmex barbatus. PLoS Genet 9, e1003730 (2013).
Google Scholar
Fewell, J. H. & Page, R. E. Jr The emergence of division of labour in forced associations of normally solitary ant queens. Evolut. Ecol. Res. 1, 537–548 (1999).
Kalina, J. Nest intruders, nest defence and foraging behaviour in the Black-and-white Casqued Hornbill Bycanistes subcylindricus. Ibis 131, 567–571 (1988).
Google Scholar
Heinsohn, R. & Legge, S. Breeding biology of the reverse-dichromatic, co-operative parrot Eclectus roratus. J. Zool. 259, 197–208 (2003).
Google Scholar
Zárybnická, M. & Vojar, J. Effect of male provisioning on the parental behavior of female Boreal Owls Aegolius funereus. Zool. Stud. 52, 36 (2013).
Google Scholar
Flores, E. & Herrero, A. Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat. Rev. Microbiol. 8, 39–50 (2010).
Google Scholar
Maynard Smith, J. & Szathmáry, E. The major transitions in evolution. (W.H. Freeman, 1995).
West, S. A., Fisher, R. M., Gardner, A. & Kiers, E. T. Major evolutionary transitions in individuality. Proc. Natl Acad. Sci. 112, 10112–10119 (2015).
Google Scholar
Gorelick, R., Bertram, S. M., Killeen, P. R. & Fewell, J. H. Normalized mutual entropy in biology: quantifying division of labor. Am. Naturalist 164, 677–682 (2004).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).
Wickham, H. ggplot2: elegant graphics for data analysis. (Springer-Verlag New York, 2016).
Auguie, B. gridExtra: miscellaneous functions for ‘Grid’ graphics. (https://CRAN.R-project.org/package=gridExtra, 2017).
Wilke, C. O. cowplot: streamlined plot theme and plot annotations for ‘ggplot2’. (https://CRAN.R-project.org/package=cowplot, 2019).
Mills, B. R. MetBrewer: color palettes inspired by works at the Metropolitan Museum of Art. (https://CRAN.R-project.org/package=MetBrewer, 2021).
Source: Ecology - nature.com