in

Resource sharing is sufficient for the emergence of division of labour

  • Ulrich, Y., Saragosti, J., Tokita, C. K., Tarnita, C. E. & Kronauer, D. J. C. Fitness benefits and emergent division of labour at the onset of group living. Nature 560, 635–638 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duarte, A., Weissing, F. J., Pen, I. & Keller, L. An evolutionary perspective on self-organized division of labor in social insects. Annu Rev. Ecol. Evol. Syst. 42, 91–110 (2011).

    Article 

    Google Scholar 

  • West, S. A. & Cooper, G. A. Division of labour in microorganisms: an evolutionary perspective. Nat. Rev. Microbiol. 14, 716–723 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oster, G. F. & Wilson, E. O. Caste and ecology in the social insects. (Princeton University Press, 1978).

  • Arnold, K. E., Owens, I. P. F. & Goldizen, A. W. Division of labour within cooperatively breeding groups. Behav 142, 1577–1590 (2005).

    Article 

    Google Scholar 

  • Bruintjes, R. & Taborsky, M. Size-dependent task specialization in a cooperative cichlid in response to experimental variation of demand. Anim. Behav. 81, 387–394 (2011).

    Article 

    Google Scholar 

  • Bergmüller, R. & Taborsky, M. Adaptive behavioural syndromes due to strategic niche specialization. BMC Ecol. 7, 12 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schaller, G. B. The Serengeti lion: a study of predator-prey relations. (University of Chicago press, 2009).

  • Bonabeau, E., Theraulaz, G. & Deneubourg, J.-L. Quantitative study of the fixed threshold model for the regulation of division of labour in insect societies. Proc. Biol. Sci. 263, 1565–1569 (1996).

    Article 

    Google Scholar 

  • Bonabeau, E. Fixed response thresholds and the regulation of division of labor in insect societies. Bull. Math. Biol. 60, 753–807 (1998).

    Article 
    MATH 

    Google Scholar 

  • Graham, S., Myerscough, M. R., Jones, J. C. & Oldroyd, B. P. Modelling the role of intracolonial genetic diversity on regulation of brood temperature in honey bee (Apis mellifera L.) colonies. Insect Soc. 53, 226–232 (2006).

    Article 

    Google Scholar 

  • Jeanson, R., Fewell, J. H., Gorelick, R. & Bertram, S. M. Emergence of increased division of labor as a function of group size. Behav. Ecol. Sociobiol. 62, 289–298 (2007).

    Article 

    Google Scholar 

  • Gove, R., Hayworth, M., Chhetri, M. & Rueppell, O. Division of labour and social insect colony performance in relation to task and mating number under two alternative response threshold models. Insect. Soc. 56, 319–331 (2009).

    Article 

    Google Scholar 

  • Ulrich, Y. et al. Response thresholds alone cannot explain empirical patterns of division of labor in social insects. PLoS Biol. 19, e3001269 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jeanson, R. & Weidenmüller, A. Interindividual variability in social insects – proximate causes and ultimate consequences. Biol. Rev. 89, 671–687 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Toth, A. L. & Robinson, G. E. Worker nutrition and division of labour in honeybees. Anim. Behav. 69, 427–435 (2005).

    Article 

    Google Scholar 

  • Smith, C. R. et al. Nutritional asymmetries are related to division of labor in a queenless ant. PLoS ONE 6, e24011 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bernadou, A. et al. Stress and early experience underlie dominance status and division of labour in a clonal insect. Proc. R. Soc. B 285, 20181468 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bernadou, A., Hoffacker, E., Pable, J. & Heinze, J. Lipid content influences division of labour in a clonal ant. J. Exp. Biol. 223, jeb.219238 (2020).

    Article 

    Google Scholar 

  • Dussutour, A., Poissonnier, L.-A., Buhl, J. & Simpson, S. J. Resistance to nutritional stress in ants: when being fat is advantageous. J. Exp. Biol. 219, 824–833 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Blanchard, G. B., Orledge, G. M., Reynolds, S. E. & Franks, N. R. Division of labour and seasonality in the ant Leptothorax albipennis: worker corpulence and its influence on behaviour. Anim. Behav. 59, 723–738 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Toth, A. L., Kantarovich, S., Meisel, A. F. & Robinson, G. E. Nutritional status influences socially regulated foraging ontogeny in honey bees. J. Exp. Biol. 208, 4641–4649 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Carter, G. G. & Wilkinson, G. S. Food sharing in vampire bats: reciprocal help predicts donations more than relatedness or harassment. Proc. R. Soc. B 280, 20122573 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meurville, Marie-Pierre & LeBoeuf, AdriaC. Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae). Myrmecol N. 31, 1–30 (2021).

    Google Scholar 

  • Duarte, A., Pen, I., Keller, L. & Weissing, F. J. Evolution of self-organized division of labor in a response threshold model. Behav. Ecol. Sociobiol. 66, 947–957 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moll, K., Federle, W. & Roces, F. The energetics of running stability: costs of transport in grass-cutting ants depend on fragment shape. J. Exp. Biol. 215, 161–168 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Ostwald, M. M., Fox, T. P., Harrison, J. F. & Fewell, J. H. Social consequences of energetically costly nest construction in a facultatively social bee. Proc. R. Soc. B 288, 20210033 (2021). rspb.2021.0033.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Molina, Y. & O’Donnell, S. A developmental test of the dominance-nutrition hypothesis: linking adult feeding, aggression, and reproductive potential in the paperwasp Mischocyttarus mastigophorus. Ethol. Ecol. Evol. 20, 125–139 (2008).

    Article 

    Google Scholar 

  • Fiocca, K. et al. Reproductive physiology corresponds to adult nutrition and task performance in a Neotropical paper wasp: a test of dominance-nutrition hypothesis predictions. Behav. Ecol. Sociobiol. 74, 114 (2020).

    Article 
    MathSciNet 

    Google Scholar 

  • Wcislo, W. T. & Gonzalez, V. H. Social and ecological contexts of trophallaxis in facultatively social sweat bees, Megalopta genalis and M. ecuadoria (Hymenoptera, Halictidae). Insect Soc. 53, 220–225 (2006).

    Article 

    Google Scholar 

  • Gautrais, J., Theraulaz, G., Deneubourg, J.-L. & Anderson, C. Emergent polyethism as a consequence of increased colony size in insect societies. J. Theor. Biol. 215, 363–373 (2002).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Ferguson-Gow, H., Sumner, S., Bourke, A. F. G. & Jones, K. E. Colony size predicts division of labour in attine ants. Proc. R. Soc. B 281, 20141411 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dornhaus, A., Holley, J.-A. & Franks, N. R. Larger colonies do not have more specialized workers in the ant Temnothorax albipennis. Behav. Ecol. 20, 922–929 (2009).

    Article 

    Google Scholar 

  • Ackermann, M. et al. Self-destructive cooperation mediated by phenotypic noise. Nature 454, 987–990 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Dubnau, D. & Losick, R. Bistability in bacteria. Mol. Microbiol 61, 564–572 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Honegger, K. & de Bivort, B. Stochasticity, individuality and behavior. Curr. Biol. 28, R8–R12 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schiessl, K. T. et al. Individual- versus group-optimality in the production of secreted bacterial compounds. Evolution 73, 675–688 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elsner, D., Hartfelder, K. & Korb, J. Molecular underpinnings of division of labour among workers in a socially complex termite. Sci. Rep. 11, 18269 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kohlmeier, P., Feldmeyer, B. & Foitzik, S. Vitellogenin-like A–associated shifts in social cue responsiveness regulate behavioral task specialization in an ant. PLoS Biol. 16, e2005747 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morandin, C., Hietala, A. & Helanterä, H. Vitellogenin and vitellogenin-like gene expression patterns in relation to caste and task in the ant Formica fusca. Insect Soc. 66, 519–531 (2019).

    Article 

    Google Scholar 

  • Cooper, G. A. & West, S. A. Division of labour and the evolution of extreme specialization. Nat. Ecol. Evol. 2, 1161–1167 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Ferrante, E., Turgut, A. E., Duéñez-Guzmán, E., Dorigo, M. & Wenseleers, T. Evolution of Self-Organized Task Specialization in Robot Swarms. PLoS Comput. Biol. 11, e1004273 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • West-Eberhard, M.J. Wasp societies as microcosms for the study of development and evolution. in Natural history and evolution of paper-wasps (eds. Turillazzi, S. & West-Eberhard, M. J.) 290–317 (Oxford University Press, 1996).

  • West-Eberhard, M. J. Flexible strategy and social evolution. in Animal societies: theories and facts (eds. Itō, Y., Brown, J. L. & Kikkawa, J.) 35–51 (Japan Scientific Societies Press, 1987).

  • Amdam, G. V., Csondes, A., Fondrk, M. K. & Page, R. E. Complex social behaviour derived from maternal reproductive traits. Nature 439, 76–78 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krishnan, J. U., Brahma, A., Chavan, S. K. & Gadagkar, R. Nutrition induced direct fitness for workers in a primitively eusocial wasp. Insect Soc. 68, 319–325 (2021).

    Article 

    Google Scholar 

  • O’Donnell, S. et al. Adult nutrition and reproductive physiology: a stable isotope analysis in a eusocial paper wasp (Mischocyttarus mastigophorus, Hymenoptera: Vespidae). Behav. Ecol. Sociobiol. 72, 86 (2018).

    Article 

    Google Scholar 

  • Salomon, M., Mayntz, D. & Lubin, Y. Colony nutrition skews reproduction in a social spider. Behav. Ecol. 19, 605–611 (2008).

    Article 

    Google Scholar 

  • Hunt, J. H. & Amdam, G. V. Bivoltinism as an antecedent to eusociality in the paper wasp genus Polistes. Science 308, 264–267 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hunt, J. H., Buck, N. A. & Wheeler, D. E. Storage proteins in vespid wasps: characterization, developmental pattern, and occurrence in adults. J. Insect Physiol. 49, 785–794 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hunt, J. H. et al. Differential gene expression and protein abundance evince ontogenetic bias toward castes in a primitively eusocial wasp. PLoS ONE 5, e10674 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, C. R., Toth, A. L., Suarez, A. V. & Robinson, G. E. Genetic and genomic analyses of the division of labour in insect societies. Nat. Rev. Genet. 9, 735–748 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sumner, S., Pereboom, J. J. M. & Jordan, W. C. Differential gene expression and phenotypic plasticity in behavioural castes of the primitively eusocial wasp, Polistes canadensis. Proc. R. Soc. B 273, 19–26 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gräff, J., Jemielity, S., Parker, J. D., Parker, K. M. & Keller, L. Differential gene expression between adult queens and workers in the ant Lasius niger. Mol. Ecol. 16, 675–683 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Nelson, C. M., Ihle, K. E., Fondrk, M. K., Page, R. E. & Amdam, G. V. The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol. 5, e62 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Corona, M. et al. Vitellogenin underwent subfunctionalization to acquire caste and behavioral specific expression in the harvester ant Pogonomyrmex barbatus. PLoS Genet 9, e1003730 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fewell, J. H. & Page, R. E. Jr The emergence of division of labour in forced associations of normally solitary ant queens. Evolut. Ecol. Res. 1, 537–548 (1999).

    Google Scholar 

  • Kalina, J. Nest intruders, nest defence and foraging behaviour in the Black-and-white Casqued Hornbill Bycanistes subcylindricus. Ibis 131, 567–571 (1988).

    Article 

    Google Scholar 

  • Heinsohn, R. & Legge, S. Breeding biology of the reverse-dichromatic, co-operative parrot Eclectus roratus. J. Zool. 259, 197–208 (2003).

    Article 

    Google Scholar 

  • Zárybnická, M. & Vojar, J. Effect of male provisioning on the parental behavior of female Boreal Owls Aegolius funereus. Zool. Stud. 52, 36 (2013).

    Article 

    Google Scholar 

  • Flores, E. & Herrero, A. Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat. Rev. Microbiol. 8, 39–50 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maynard Smith, J. & Szathmáry, E. The major transitions in evolution. (W.H. Freeman, 1995).

  • West, S. A., Fisher, R. M., Gardner, A. & Kiers, E. T. Major evolutionary transitions in individuality. Proc. Natl Acad. Sci. 112, 10112–10119 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gorelick, R., Bertram, S. M., Killeen, P. R. & Fewell, J. H. Normalized mutual entropy in biology: quantifying division of labor. Am. Naturalist 164, 677–682 (2004).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).

  • Wickham, H. ggplot2: elegant graphics for data analysis. (Springer-Verlag New York, 2016).

  • Auguie, B. gridExtra: miscellaneous functions for ‘Grid’ graphics. (https://CRAN.R-project.org/package=gridExtra, 2017).

  • Wilke, C. O. cowplot: streamlined plot theme and plot annotations for ‘ggplot2’. (https://CRAN.R-project.org/package=cowplot, 2019).

  • Mills, B. R. MetBrewer: color palettes inspired by works at the Metropolitan Museum of Art. (https://CRAN.R-project.org/package=MetBrewer, 2021).


  • Source: Ecology - nature.com

    Community succession and functional prediction of microbial consortium with straw degradation during subculture at low temperature

    Predicting the potential global distribution of an invasive alien pest Trioza erytreae (Del Guercio) (Hemiptera: Triozidae)