in

Incorporating distance metrics and temporal trends to refine mixed stock analysis

  • MacPherson, E. Ontogenetic shifts in habitat use and aggregation in juvenile sparid fishes. J. Exp. Mar. Bio. Ecol. 220, 127–150 (1998).

    Article 

    Google Scholar 

  • Freitas, C., Olsen, E. M., Knutsen, H., Albretsen, J. & Moland, E. Temperature-associated habitat selection in a cold-water marine fish. J. Anim. Ecol. 85, 628–637 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Michelot, C. et al. Seasonal variation in coastal marine habitat use by the European shag: Insights from fine scale habitat selection modeling and diet. Deep. Res. Part II Top. Stud. Oceanogr. 141, 224–236 (2017).

    Article 

    Google Scholar 

  • Davoren, G. K., Montevecchi, W. A. & Anderson, J. T. Distributional patterns of a marine bird and its prey: Habitat selection based on prey and conspecific behaviour. Mar. Ecol. Prog. Ser. 256, 229–242 (2003).

    Article 

    Google Scholar 

  • Chiarello, A. G. et al. A translocation experiment for the conservation of maned sloths, Bradypus torquatus (Xenarthra, Bradypodidae). Biol. Conserv. 118, 421–430 (2004).

    Article 

    Google Scholar 

  • Fukuda, Y. et al. Environmental resistance and habitat quality influence dispersal of the saltwater crocodile. Mol. Ecol. 31, 1076–1092 (2022).

    Article 
    PubMed 

    Google Scholar 

  • O’Leary, S. J., Dunton, K. J., King, T. L., Frisk, M. G. & Chapman, D. D. Genetic diversity and effective size of Atlantic sturgeon, Acipenser oxyrhinchus oxyrhinchus river spawning populations estimated from the microsatellite genotypes of marine-captured juveniles. Conserv. Genet. 15, 1173–1181 (2014).

    Article 

    Google Scholar 

  • Brüniche-Olsen, A. et al. Genetic data reveal mixed-stock aggregations of gray whales in the North Pacific Ocean. Biol. Lett. 14, 1–4 (2018).

    Article 

    Google Scholar 

  • Carroll, E. L. et al. Genetic diversity and connectivity of southern right whales (Eubalaena australis) found in the Brazil and Chile-Peru wintering grounds and the South Georgia (Islas Georgias Del Sur) feeding ground. J. Hered. 111, 263–276 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bowen, A. B. W. et al. Origin of hawksbill turtles in a Caribbean feeding area as indicated by genetic markers. Ecol. Appl. 6, 566–572 (1996).

    Article 

    Google Scholar 

  • Paxton, K. L., Yau, M., Moore, F. R. & Irwin, D. E. Differential migratory timing of western populations of Wilson’s Warbler (Cardellina pusilla) revealed by mitochondrial DNA and stable isotopes. Auk 130, 689–698 (2013).

    Article 

    Google Scholar 

  • Anderson, E. C., Waples, R. S. & Kalinowski, S. T. An improved method for predicting the accuracy of genetic stock identification. Can. J. Fish. Aquat. Sci. 65, 1475–1486 (2008).

    Article 

    Google Scholar 

  • Debevec, E. M. SPAM (version 3.2): Statistics program for analyzing mixtures. J. Hered. 91, 509–511 (2000).

    Article 
    PubMed 

    Google Scholar 

  • Bolker, B. M., Okuyama, T., Bjorndal, K. A. & Bolten, A. B. Incorporating multiple mixed stocks in mixed stock analysis: ‘Many-to-many’ analyses. Mol. Ecol. 16, 685–695 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Neaves, P. I., Wallace, C. G., Candy, J. R. & Beacham, T. D. CBayes: Computer Program for Mixed Stock Analysis of Allelic Data. Free Program Distributed by the Authors Over the Internet. at (2005).

  • Pella, J. & Masuda, M. Bayesian methods for analysis of stock mixtures from genetic characters. Fish. Bull. 99, 151–167 (2001).

    Google Scholar 

  • Bolker, B., Okuyama, T., Bjorndal, K. A. & Bolten, A. B. Sea turtle stock estimation using genetic markers: Accounting for sampling error of rare genotypes. Ecol. Appl. 13, 763–775 (2003).

    Article 

    Google Scholar 

  • Okuyama, T. & Bolker, B. M. Combining genetic and ecological data to estimate sea turtle origins. Ecol. Appl. 15, 315–325 (2005).

    Article 

    Google Scholar 

  • Nishizawa, H. et al. Composition of green turtle feeding aggregations along the Japanese archipelago: Implications for changes in composition with current flow. Mar. Biol. 160, 2671–2685 (2013).

    Article 

    Google Scholar 

  • Naro-Maciel, E. et al. Predicting connectivity of green turtles at Palmyra Atoll, central Pacific: A focus on mtDNA and dispersal modelling. J. R. Soc. Interface 11, 20130888 (2014).

  • Proietti, M. C. et al. Green turtle Chelonia mydas mixed stocks in the western South Atlantic, as revealed by mtDNA haplotypes and drifter trajectories. Mar. Ecol. Prog. Ser. 447, 195–209 (2012).

    Article 

    Google Scholar 

  • van der Zee, J. P. et al. Population recovery changes population composition at a major southern Caribbean juvenile developmental habitat for the green turtle, Chelonia mydas. Sci. Rep. 9, 1–11 (2019).

    Google Scholar 

  • Shamblin, B. M. et al. Mexican origins for the Texas green turtle foraging aggregation: A cautionary tale of incomplete baselines and poor marker resolution. J. Exp. Mar. Bio. Ecol. 488, 111–120 (2017).

    Article 

    Google Scholar 

  • Seminoff, J. A. et al. Status Review of the Green Turtle (Chelonia mydas) Under the Endangered Species Act. (NOAA Technical Memorandum, NOAA-NMFS-SWFSC, 2015).

  • Chaloupka, M. et al. Encouraging outlook for recovery of a once severely exploited marine megaherbivore. Glob. Ecol. Biogeogr. 17, 297–304 (2008).

    Article 

    Google Scholar 

  • Bjorndal, K. A. & Bolten, A. B. Annual variation in source contributions to a mixed stock: Implications for quantifying connectivity. Mol. Ecol. 17, 2185–2193 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Roland, J., Keyghobadi, N. & Fownes, S. Alpine Parnassius butterfly dispersal: Effects of landscape and population size. Ecology 81, 1642–1653 (2000).

    Article 

    Google Scholar 

  • Vanschoenwinkel, B., De Vries, C., Seaman, M. & Brendonck, L. The role of metacommunity processes in shaping invertebrate rock pool communities along a dispersal gradient. Oikos 116, 1255–1266 (2007).

    Article 

    Google Scholar 

  • Shamblin, B. M. et al. Mitogenomic sequences better resolve stock structure of southern Greater Caribbean green turtle rookeries. Mol. Ecol. 21, 2330–2340 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Witherington, B., Hirama, S. & Hardy, R. Young sea turtles of the pelagic Sargassum-dominated drift community: Habitat use, population density, and threats. Mar. Ecol. Prog. Ser. 463, 1–22 (2012).

    Article 

    Google Scholar 

  • Putman, N. F. & Mansfield, K. L. Direct evidence of swimming demonstrates active dispersal in the sea turtle ‘lost years’. Curr. Biol. 25, 1221–1227 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Mansfield, K. L., Wyneken, J. & Luo, J. First Atlantic satellite tracks of ‘lost years’ green turtles support the importance of the Sargasso Sea as a sea turtle nursery. Proc. R. Soc. B Biol. Sci. 288, 20210057 (2021).

  • Putman, N. F. et al. Predicted distributions and abundances of the sea turtle ‘lost years’ in the western North Atlantic Ocean. Ecography (Cop.) 43, 506–517 (2020).

    Article 

    Google Scholar 

  • Putman, N. F. & Naro-Maciel, E. Finding the ‘lost years’ in green turtles: Insights from ocean circulation models and genetic analysis. Proc. R. Soc. B Biol. Sci. 280, 20131468 (2013).

  • Naro-Maciel, E., Hart, K. M., Cruciata, R. & Putman, N. F. DNA and dispersal models highlight constrained connectivity in a migratory marine megavertebrate. Ecography (Cop.) 40, 586–597 (2017).

    Article 

    Google Scholar 

  • Ehrhart, L. M., Redfoot, W. E. & Bagley, D. A. Marine turtles of the central region of the Indian River Lagoon system, Florida. Florida Sci. 70, 415–434 (2007).

    Google Scholar 

  • Redfoot, W. & Ehrhart, L. Trends in size class distribution, recaptures, and abundance of juvenile green turtles (Chelonia mydas) utilizing a rock riprap lined embayment at Port Canaveral, Florida, USA, as developmental habitat. Chelonian Conserv. Biol. 12, 252–261 (2013).

    Article 

    Google Scholar 

  • Ehrhart, L., Redfoot, W., Bagley, D. & Mansfield, K. Long-term trends in loggerhead (Caretta caretta) nesting and reproductive success at an important western Atlantic rookery. Chelonian Conserv. Biol. 13, 173–181 (2014).

    Article 

    Google Scholar 

  • Bolten, A. B. Techniques for measuring sea turtles. in Research and Management Techniques for the Conservation of Sea Turtles. (eds. Eckert, K. L., Bjorndal, K. A., Abreu-Grobois, F. A. & Donnelly, M.). 1–5 (1999).

  • Bagley, D. A. Characterizing Juvenile Green Turtles, (Chelonia mydas), from Three East Central Florida Developmental Habitats. (University of Central Florida, 2003).

  • Rohland, N. & Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 22, 939–946 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Faircloth, B. & Glenn, T. Preparation of an AMPure XP Substitute. AKA Serapure https://doi.org/10.6079/J9MW2F26 (2016).

    Article 

    Google Scholar 

  • Abreu-Grobois, F. A. et al. New mtDNA Dloop primers which work for a variety of marine turtle species may increase the resolution of mixed stock analyses. in Proceedings of the 26th Annual Symposium on Sea Turtle Biology. 179 (International Sea Turtle Society, 2006).

  • Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leigh, J. W. & Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).

    Article 

    Google Scholar 

  • Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Wright, S. Evolution and the Genetics of Populations. Vol. 4. Variability Within and Among Natural Populations. (University of Chicago Press, 1978).

  • Hays, G. C. Ocean currents and marine life. Curr. Biol. 27, R470–R473 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Engstrom, T. N., Meylan, P. A. & Meylan, A. B. Origin of juvenile loggerhead turtles (Caretta caretta) in a tropical developmental habitat in Caribbean Panamá. Anim. Conserv. 5, 125–133 (2002).

    Article 

    Google Scholar 

  • Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, F. W. C. F. W. R. I. Index Nesting Beach Survey (INBS). (2021).

  • Cuevas Flores, E. A., Guzmán Hernández, V., Guerra Santos, J. J. & Rivas Hernández, G. A. El uso del Conocimiento de las Tortugas Marinas Como Herramienta para la Restauración de sus Poblaciones y Hábitats Asociados. (Universidad Autónoma del Carmen, 2019).

  • Pineda, O. G. & Rocha, A. R. B. Las Tortugas Marinas en México: Logros y Perspectivas para su Conservación. (CONANP, 2016).

  • Varela, R. G., Quílez, G. Z. & Harrison, E. Report on the 2014 Green Turtle Program at Tortuguero, Costa Rica. (2015).

  • Azanza Ricardo, J. et al. Nesting ecology of Chelonia mydas (Testudines: Cheloniidae) on the Guanahacabibes Peninsula. Cuba. Rev. Biol. Trop. 61, 1935–1945 (2013).

    PubMed 

    Google Scholar 

  • Nalovic, M. A. et al. Sea Turtles in the North Atlantic & Wider Caribbean Region. (2020).

  • Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).

    Article 

    Google Scholar 

  • Kruschke, J. K. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan. https://doi.org/10.1016/B978-0-12-405888-0.09999-2 (Academic Press, 2015).

  • Ruiz-Urquiola, A. et al. Population genetic structure of greater Caribbean green turtles (Chelonia mydas) based on mitochondrial DNA sequences, with an emphasis on rookeries from southwestern Cuba. Rev. Investig. Mar. 31, 33–52 (2010).

    Google Scholar 

  • Long, C. A. et al. Incongruent long-term trends of a marine consumer and primary producers in a habitat affected by nutrient pollution. Ecosphere 12, e03553 (2021).

    Article 

    Google Scholar 

  • Phillips, K. F., Stahelin, G. D., Chabot, R. M. & Mansfield, K. L. Long-term trends in marine turtle size at maturity at an important Atlantic rookery. Ecosphere 12, 7 (2021).

    Article 

    Google Scholar 

  • Bjorndal, K. A., Bolten, A. B. & Chaloupka, M. Y. Evaluating trends in abundance of immature green turtles, Chelonia mydas, in the Greater Caribbean. Ecol. Appl. 15, 304–314 (2005).

    Article 

    Google Scholar 

  • Naro-Maciel, E. et al. The interplay of homing and dispersal in green turtles: A focus on the southwestern atlantic. J. Hered. 103, 792–805 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Monzón-Argüello, C. et al. Evidence from genetic and Lagrangian drifter data for transatlantic transport of small juvenile green turtles. J. Biogeogr. 37, 1752–1766 (2010).

    Article 

    Google Scholar 

  • Luke, K., Horrocks, J. A., LeRoux, R. A. & Dutton, P. H. Origins of green turtle (Chelonia mydas) feeding aggregations around Barbados, West Indies. Mar. Biol. 144, 799–805 (2004).

    Article 

    Google Scholar 

  • Bass, A. L., Epperly, S. P. & Braun-McNeill, J. Green turtle (Chelonia mydas) foraging and nesting aggregations in the Caribbean and Atlantic: Impact of currents and behavior on dispersal. J. Hered. 97, 346–354 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Lahanas, P. N. et al. Genetic composition of a green turtle (Chelonia mydas) feeding ground population: Evidence for multiple origins. Mar. Biol. 130, 345–352 (1998).

    Article 

    Google Scholar 

  • Foley, A. M. et al. Characteristics of a green turtle (Chelonia mydas) assemblage in northwestern Florida determined during a hypothermic stunning event. Gulf Mex. Sci. 25, 131–143 (2007).

    Google Scholar 

  • Bass, A. L., Lagueux, C. J. & Bowen, B. W. Origin of green turtles, Chelonia mydas, at ‘Sleeping Rocks’ off the Northeast coast of Nicaragua. Copeia 1998, 1064 (1998).

    Article 

    Google Scholar 

  • Bass, A. L. & Witzell, W. N. Demographic composition of immature green turtles (Chelonia mydas) from the East Central Florida Coast: Evidence from mtDNA markers. Herpetologica 56, 357–367 (2000).

    Google Scholar 

  • Bjorndal, K. A., Parsons, J., Mustin, W. & Bolten, A. B. Threshold to maturity in a long-lived reptile: Interactions of age, size, and growth. Mar. Biol. 160, 607–616 (2013).

    Article 

    Google Scholar 

  • Perrault, J. R. et al. Maternal health status correlates with nest success of leatherback sea turtles (Dermochelys coriacea) from Florida. PLoS ONE 7, e31841 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Montero, N. et al. Warmer and wetter conditions will reduce offspring production of hawksbill turtles in Brazil under climate change. PLoS ONE 13, 1–16 (2018).

    Article 

    Google Scholar 

  • Shamblin, B. M. et al. Geographic patterns of genetic variation in a broadly distributed marine vertebrate: New insights into loggerhead turtle stock structure from expanded mitochondrial DNA sequences. PLoS ONE 9, 85956 (2014).

    Article 

    Google Scholar 

  • Anderson, J. D., Shaver, D. J. & Karel, W. J. Genetic Diversity and Natal Origins of Green Turtles (Chelonia mydas) in the Western Gulf of Mexico. J. Herpetol. 47, 251–257 (2013).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT Policy Hackathon produces new solutions for technology policy challenges

    A breakthrough on “loss and damage,” but also disappointment, at UN climate conference