in

Growth of alpine grassland will start and stop earlier under climate warming

  • Körner, C. Alpine Plant Life: Functional plant ecology of high mountain ecosystems. (Springer, 2021). https://doi.org/10.1007/978-3-030-59538-8.

  • Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).

    Article 

    Google Scholar 

  • Pepin, N. C. et al. Climate changes and their elevational patterns in the mountains of the world. Rev. Geophys. 60, e2020RG000730 (2022).

  • Stewart, I. T. Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol. Process 23, 78–94 (2009).

    Article 

    Google Scholar 

  • Vorkauf, M., Marty, C., Kahmen, A. & Hiltbrunner, E. Past and future snowmelt trends in the Swiss Alps: the role of temperature and snowpack. Clim. Change 165, 44–62 (2021).

    Article 

    Google Scholar 

  • Inouye, D. W. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89, 353–362 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Vorkauf, M., Kahmen, A., Körner, C. & Hiltbrunner, E. Flowering phenology in alpine grassland strongly responds to shifts in snowmelt but weakly to summer drought. Alp. Bot. 131, 73–88 (2021).

    Article 

    Google Scholar 

  • Wipf, S. & Rixen, C. A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Res. 29, 95–109 (2010).

    Article 

    Google Scholar 

  • Collins, C. G. et al. Experimental warming differentially affects vegetative and reproductive phenology of tundra plants. Nat. Commun. 12, 3442 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Choler, P. Growth response of temperate mountain grasslands to inter-annual variations in snow cover duration. Biogeosciences 12, 3885–3897 (2015).

    Article 

    Google Scholar 

  • Xie, J. et al. Land surface phenology and greenness in alpine grasslands driven by seasonal snow and meteorological factors. Sci. Total Environ. 725, 138380 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nord, E. A. & Lynch, J. P. Plant phenology: a critical controller of soil resource acquisition. J. Exp. Bot. 60, 1927–1937 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gallinat, A. S., Primack, R. B. & Wagner, D. L. Autumn, the neglected season in climate change research. Trends Ecol. Evol. 30, 169–176 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Rosa, R. K. et al. Plant phenological responses to a long‐term experimental extension of growing season and soil warming in the tussock tundra of Alaska. Glob. Change Biol. 21, 4520–4532 (2015).

    Article 

    Google Scholar 

  • Livensperger, C. et al. Earlier snowmelt and warming lead to earlier but not necessarily more plant growth. AoB Plants 8, plw021 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Körner, C. & Hiltbrunner, E. Why is the alpine flora comparatively robust against climatic warming? Diversity 13, 383–397 (2021).

    Article 

    Google Scholar 

  • Ma, H. et al. The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nat. Ecol. Evol. 5, 1110–1122 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Iversen, C. M. et al. The unseen iceberg: plant roots in arctic tundra. N. Phytol. 205, 34–58 (2015).

    Article 

    Google Scholar 

  • Abramoff, R. Z. & Finzi, A. C. Are above‐ and below‐ground phenology in sync? N. Phytol. 205, 1054–1061 (2015).

    Article 

    Google Scholar 

  • Liu, H. et al. Phenological mismatches between above- and belowground plant responses to climate warming. Nat. Clim. Change 12, 97–102 (2022).

    Article 
    CAS 

    Google Scholar 

  • Rixen, C. et al. Winters are changing: snow effects on Arctic and alpine tundra ecosystems. Arct. Sci. 1–37 (2022) https://doi.org/10.1139/as-2020-0058.

  • Johnson, M. G., Tingey, D. T., Phillips, D. L. & Storm, M. J. Advancing fine root research with minirhizotrons. Environ. Exp. Bot. 45, 263–289 (2001).

    Article 
    PubMed 

    Google Scholar 

  • Atkinson, J. A., Pound, M. P., Bennett, M. J. & Wells, D. M. Uncovering the hidden half of plants using new advances in root phenotyping. Curr. Opin. Biotech. 55, 1–8 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Radville, L., McCormack, M. L., Post, E. & Eissenstat, D. M. Root phenology in a changing climate. J. Exp. Bot. 67, 3617–3628 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Blume-Werry, G. The belowground growing season. Nat. Clim. Change 12, 11–12 (2022).

    Article 

    Google Scholar 

  • Wipf, S., Stoeckli, V. & Bebi, P. Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Clim. Change 94, 105–121 (2009).

    Article 

    Google Scholar 

  • Baptist, F., Flahaut, C., Streb, P. & Choler, P. No increase in alpine snowbed productivity in response to experimental lengthening of the growing season. Plant Biol. 12, 755–764 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vitasse, Y. et al. ‘Hearing’ alpine plants growing after snowmelt: ultrasonic snow sensors provide long-term series of alpine plant phenology. Int J. Biometeorol. 61, 349–361 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Blume‐Werry, G., Jansson, R. & Milbau, A. Root phenology unresponsive to earlier snowmelt despite advanced above‐ground phenology in two subarctic plant communities. Funct. Ecol. 31, 1493–1502 (2017).

    Article 

    Google Scholar 

  • Darrouzet‐Nardi, A. et al. Limited effects of early snowmelt on plants, decomposers, and soil nutrients in Arctic tundra soils. Ecol. Evol. 9, 1820–1844 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ernakovich, J. G. et al. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob. Change Biol. 20, 3256–3269 (2014).

    Article 

    Google Scholar 

  • Keller, F. & Körner, C. The role of photoperiodism in alpine plant development. Arct. Antarct. Alp. Res 35, 361–368 (2003).

    Article 

    Google Scholar 

  • Hiltbrunner, E., Arnaiz, J. & Körner, C. Biomass allocation and seasonal non-structural carbohydrate dynamics do not explain the success of tall forbs in short alpine grassland. Oecologia 1–15 (2021) https://doi.org/10.1007/s00442-021-04950-7.

  • Inauen, N., Körner, C. & Hiltbrunner, E. No growth stimulation by CO2 enrichment in alpine glacier forefield plants. Glob. Change Biol. 18, 985–999 (2012).

    Article 

    Google Scholar 

  • Möhl, P., Hiltbrunner, E. & Körner, C. Halving sunlight reveals no carbon limitation of aboveground biomass production in alpine grassland. Glob. Change Biol. 26, 1857–1872 (2020).

    Article 

    Google Scholar 

  • Porter, J. R. & Gawith, M. Temperatures and the growth and development of wheat: a review. Eur. J. Agron. 10, 23–36 (1999).

    Article 

    Google Scholar 

  • Parent, B., Turc, O., Gibon, Y., Stitt, M. & Tardieu, F. Modelling temperature-compensated physiological rates, based on the co-ordination of responses to temperature of developmental processes. J. Exp. Bot. 61, 2057–2069 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Körner, C. H. & Woodward, F. I. The dynamics of leaf extension in plants with diverse altitudinal ranges. Oecologia 72, 279–283 (1987).

    Article 
    PubMed 

    Google Scholar 

  • Nagelmüller, S., Hiltbrunner, E. & Körner, C. Low temperature limits for root growth in alpine species are set by cell differentiation. AoB Plants 9, plx054 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Starr, G., Oberbauer, S. F. & Pop, E. W. Effects of lengthened growing season and soil warming on the phenology and physiology of Polygonum bistorta. Glob. Change Biol. 6, 357–369 (2000).

    Article 

    Google Scholar 

  • Yoshie, F. Vegetative phenology of alpine plants at Tateyama Murodo-daira in central Japan. J. Plant Res. 123, 675–688 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Jonas, T., Rixen, C., Sturm, M. & Stoeckli, V. How alpine plant growth is linked to snow cover and climate variability. J. Geophys. Res. 113, G03013 (2008).

    Google Scholar 

  • Wang, H. et al. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol. Lett. 23, 701–710 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frei, E. R. & Henry, G. H. R. Long-term effects of snowmelt timing and climate warming on phenology, growth, and reproductive effort of Arctic tundra plant species. Arct. Sci. 1–22 (2021) https://doi.org/10.1139/as-2021-0028.

  • Schäppi, B. & Körner, C. Growth responses of an alpine grassland to elevated CO2. Oecologia 105, 43–52 (1996).

    Article 
    PubMed 

    Google Scholar 

  • Aloni, R. Role of hormones in controlling vascular differentiation and the mechanism of lateral root initiation. Planta 238, 819–830 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sloan, V. L., Fletcher, B. J. & Phoenix, G. K. Contrasting synchrony in root and leaf phenology across multiple sub‐Arctic plant communities. J. Ecol. 104, 239–248 (2016).

    Article 
    CAS 

    Google Scholar 

  • Nagelmüller, S., Hiltbrunner, E. & Körner, C. Critically low soil temperatures for root growth and root morphology in three alpine plant species. Alp. Bot. 126, 11–21 (2016).

    Article 

    Google Scholar 

  • Woo, H. R., Kim, H. J., Lim, P. O. & Nam, H. G. Leaf senescence: systems and dynamics aspects. Annu. Rev. Plant Biol. 70, 1–30 (2019).

    Article 

    Google Scholar 

  • Liu, Z., Marella, C. B. N., Hartmann, A., Hajirezaei, M. R. & Wirén, Nvon An age-dependent sequence of physiological processes defines developmental root senescence. Plant Physiol. 181, 993–1007 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ryser, P., Puig, S., Müller, M. & Munné-Bosch, S. Abscisic acid responses match the different patterns of autumn senescence in roots and leaves of Iris versicolor and Sparganium emersum. Environ. Exp. Bot. 176, 104097 (2020).

    Article 
    CAS 

    Google Scholar 

  • Budge, K., Leifeld, J., Hiltbrunner, E. & Fuhrer, J. Alpine grassland soils contain large proportion of labile carbon but indicate long turnover times. Biogeosciences 8, 1911–1923 (2011).

    Article 
    CAS 

    Google Scholar 

  • Solly, E. F. et al. Unravelling the age of fine roots of temperate and boreal forests. Nat. Commun. 9, 3006 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trumbore, S. E., Sierra, C. A. & Pries, C. E. H. Radiocarbon and climate change, mechanisms, applications and laboratory techniques. 45–82 (2016) https://doi.org/10.1007/978-3-319-25643-6_3.

  • Windmaißer, T. & Reisch, C. Long-term study of an alpine grassland: local constancy in times of global change. Alp. Bot. 123, 1–6 (2013).

    Article 

    Google Scholar 

  • De Witte, L. C. D., Armbruster, G. F. J., Gielly, L., Taberlet, P. & Stöcklin, J. AFLP markers reveal high clonal diversity and extreme longevity in four key arctic‐alpine species. Mol. Ecol. 21, 1081–1097 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Landolt, E. Unsere Alpenflora. (SAC-Verlag, 2012).

  • Puşcaş, M. & Choler, P. A biogeographic delineation of the European Alpine System based on a cluster analysis of Carex curvula-dominated grasslands. Flora – Morphol. Distrib. Funct. Ecol. Plants 207, 168–178 (2012).

    Article 

    Google Scholar 

  • Grabherr, G., Mahr, E. & Reisigl, H. Nettoprimärproduktion und Reproduktion in einem Krummseggenrasen (Caricetum curvulae) der Otztaler Alpen, Tirol. Oecologia Plant. 13, 227–251 (1978).

    Google Scholar 

  • Chiang, C., Bånkestad, D. & Hoch, G. Reaching natural growth: light quality effects on plant performance in indoor growth facilities. Plants 9, 1273 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chiang, C., Olsen, J. E., Basler, D., Bånkestad, D. & Hoch, G. Latitude and weather influences on sun light quality and the relationship to tree growth. Forests 10, 610–621 (2019).

    Article 

    Google Scholar 

  • Richardson, A. D. et al. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia 152, 323–334 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Jiang, Y. & Li, C. Convolutional neural networks for image-based high-throughput plant phenotyping: a review. Plant Phenomics 2020, 4152816 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Möller, B. et al. rhizoTrak: a flexible open source Fiji plugin for user-friendly manual annotation of time-series images from minirhizotrons. Plant Soil 444, 519–534 (2019).

    Article 

    Google Scholar 

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smith, A. G., Petersen, J., Selvan, R. & Rasmussen, C. R. Segmentation of roots in soil with U-Net. Plant Methods 16, 13–27 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seethepalli, A. et al. Rhizovision crown: an integrated hardware and software platform for root crown phenotyping. Plant Phenomics 2020, 3074916 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2021).

  • Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.6.2-1. (2021).

  • Möhl P., von Büren R. S. & Hiltbrunner E. Data from: Growth of alpine grassland will start and stop earlier under climate warming figshare. https://doi.org/10.6084/m9.figshare.20440497 (2022).


  • Source: Ecology - nature.com

    Features of urban green spaces associated with positive emotions, mindfulness and relaxation

    Using game engines and “twins” to co-create stories of climate futures