in

Moss establishment success is determined by the interaction between propagule size and species identity

  • Ebenhard, T. Colonization in metapopulations: A review of theory and observations. Biol. J. Linn. Soc. 42, 105–121 (1991).

    Article 

    Google Scholar 

  • Szucs, M., Melbourne, B. A., Tuff, T. & Hufbauer, R. A. The roles of demography and genetics in the early stages of colonization. Proc. R. Soc. B Biol. Sci. 281, 20141073 (2014).

    Article 

    Google Scholar 

  • Williamson, M. Biological invasions Vol. 15 (Springer, 1996).

    Google Scholar 

  • Dai, Z. C. et al. Synergy among hypotheses in the invasion process of alien plants: A road map within a timeline. Perspect. Plant Ecol. Evol. Syst. 47, 125575 (2020).

    Article 

    Google Scholar 

  • Briski, E. et al. Beyond propagule pressure: Importance of selection during the transport stage of biological invasions. Front. Ecol. Environ. 16, 345–353 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y. & Vitt, D. H. The dynamics of moss establishment: Temporal responses to nutrient gradients. Bryologist 97, 357–364 (1994).

    Article 

    Google Scholar 

  • Li, Y. & Vitt, D. H. The dynamics of moss establishment: Temporal responses to a moisture gradient. J. Bryol. 18, 677–687 (1995).

    Article 

    Google Scholar 

  • Wiklund, K. & Rydin, H. Ecophysiological constraints on spore establishment in bryophytes. Funct. Ecol. 18, 907–913 (2004).

    Article 

    Google Scholar 

  • Zanatta, F. et al. Bryophytes are predicted to lag behind future climate change despite their high dispersal capacities. Nat. Commun. 11, 1–9 (2020).

    Article 

    Google Scholar 

  • Seaborn, T. J., Goldberg, C. S. & Crespi, E. J. Integration of dispersal data into distribution modeling: What have we done and what have we learned?. Front. Biogeogr. 12, 1–14 (2020).

    Article 

    Google Scholar 

  • Glime, J. M. Bryophyte Ecology (Vol. 1, Issue Physiological Ecology, Chapter 4–10 Adaptive strategies: vegetative propagules, pp. 1–44). (2021).

  • Guerra, J., Brugués, M., Cano, M. J. & Cros, R. M. Bryum Hedw. in Flora Briofítica Ibérica, Vol. IV, Funariales, Splachnales, Schistostegales, Bryales, Timmiales (eds. Brugués, M. & Cros, R. M.) 105–178 (Universidad de Murcia. Sociedad Española de Briología, 2010).

    Google Scholar 

  • Medina, N. G., Draper, I. & Lara, F. Biogeography of mosses and allies: Does size matter? in Biogeography of microscopic organisms: is everything small everywhere? 209–233 (2011). https://doi.org/10.1017/CBO9780511974878.012

  • Miles, C. J. & Longton, R. E. The role of spores in reproduction in mosses. Bot. J. Linn. Soc. 104, 149–173 (1990).

    Article 

    Google Scholar 

  • Estébanez, B., Draper, I. & Bujalance, R. M. Bryophytes: An approximation to the simplest land plants. in Biodiversidad. Aproximación a la diversidad botánica y zoológica de España 19 (2011).

  • Frey, W. & Kürschner, H. Asexual reproduction, habitat colonization and habitat maintenance in bryophytes. Flora Morphol. Distrib. Funct. Ecol. Plants 206, 173–184 (2011).

    Article 

    Google Scholar 

  • Giordano, S. et al. Regeneration from detached leaves of Pleurochaete squarrosa (Brid.) Lindb. in culture and in the wild. J. Bryol. 19, 219–227 (1996).

    Article 

    Google Scholar 

  • La Farge, C., Williams, K. H. & England, J. H. Regeneration of Little Ice Age bryophytes emerging from a polar glacier with implications of totipotency in extreme environments. Proc. Natl. Acad. Sci. U. S. A. 110, 9839–9844 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robinson, S. C. & Miller, N. G. Bryophyte diversity on Adirondack alpine summits is maintained by dissemination and establishment of vegetative fragments and spores. Bryologist 116, 382–391 (2013).

    Article 

    Google Scholar 

  • Glime, J. M. Chapter 2–1 Meet the bryophytes. in Bryophyte Ecology 1 (2020).

  • Korpelainen, H., Pohjamo, M. & Laaka-Lindberg, S. How efficiently does bryophyte dispersal lead to gene flow?. J. Hattori Bot. Lab. 205, 195–205 (2005).

    Google Scholar 

  • Schuster, R. M. Phytogeography of the Bryophyta. in New manual of Bryology 1, 463–626 (Hattori Bot. Lab, 1983).

  • Löbel, S., Schröder, B. & Snäll, T. Projected shifts in deadwood bryophyte communities under national climate and forestry scenarios benefit large competitors and impair small species. J. Biogeogr. https://doi.org/10.1111/jbi.14278 (2021).

    Article 

    Google Scholar 

  • Laaka-Lindberg, S., Korpelainen, H. & Pohjamo, M. Dispersal of asexual propagules in bryophytes. J. Hattori Bot. Lab. 330, 319–330 (2003).

    Google Scholar 

  • Miller, N. G. & Mogensen, G. S. Cyrtomnium hymenophylloides (Bryophyta, Mniaceae) in North America and Greenland: Male plants, sex-differential geographical distribution, and reproductive characteristics. Bryologist 100, 499–506 (1997).

    Article 

    Google Scholar 

  • Muñoz, J., Felicísimo, Á. M., Cabezas, F., Burgaz, A. R. & Martínez, I. Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 304, 1144–1147 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Patiño, J. & Vanderpoorten, A. Bryophyte biogeography. CRC. Crit. Rev. Plant Sci. 37, 175–209 (2018).

    Article 

    Google Scholar 

  • Pasiche-Lisboa, C. J., Booth, T., Belland, R. J. & Piercey-Normore, M. D. Moss and lichen asexual propagule dispersal may help to maintain the extant community in boreal forests. Ecosphere 10, e02823 (2019).

    Article 

    Google Scholar 

  • Barbé, M., Fenton, N. J. & Bergeron, Y. So close and yet so far away: Long-distance dispersal events govern bryophyte metacommunity reassembly. J. Ecol. 104, 1707–1719 (2016).

    Article 

    Google Scholar 

  • Hansson, L., Söderström, L. & Solbreck, C. The ecology of dispersal in relation to conservation. in Ecological principles of nature conservation. Conservation Ecology series: principles, practices and management. (ed. Hansson, L.) (Springer, 1992). https://doi.org/10.1007/978-1-4615-3524-9

    Chapter 

    Google Scholar 

  • Miller, N. G. & Ambrose, L. J. H. Growth in culture of wind-blown bryophyte gametophyte fragments from Arctic Canada. Bryologist 79, 55 (1976).

    Article 

    Google Scholar 

  • Barbé, M., Fenton, N. J., Caners, R. & Bergeron, Y. Inter-annual variation in bryophyte dispersal: Linking bryophyte phenophases and weather conditions. Botany 95, 1151–1169 (2017).

    Article 

    Google Scholar 

  • Chmielewski, M. W. & Eppley, S. M. Forest passerines as a novel dispersal vector of viable bryophyte propagules. Proc. R. Soc. B Biol. Sci. 286, 20182253 (2019).

    Article 
    CAS 

    Google Scholar 

  • Davison, G. W. H. Role of birds in moss dispersal. Br. Birds 69, 65–66 (1976).

    Google Scholar 

  • Heinken, T., Lees, R., Raudnitschka, D. & Runge, S. Epizoochorous dispersal of bryophyte stem fragments by roe deer (Capreolus capreolus) and wild boar (Sus scrofa). J. Bryol. 23, 293–300 (2001).

    Article 

    Google Scholar 

  • Parsons, J. G. et al. Bryophyte dispersal by flying foxes: A novel discovery. Oecologia 152, 112–114 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Glime, J. M. Bryophyte Ecology (Vol. 2, Issue Bryological Interaction) (2021).

  • Ware, C., Bergstrom, D. M., Müller, E. & Alsos, I. G. Humans introduce viable seeds to the Arctic on footwear. Biol. Invasions 14, 567–577 (2012).

    Article 

    Google Scholar 

  • Shacklette, H. T. Unattached moss polsters on Amchitka Island, Alaska. Bryologist 69, 346–352 (1966).

    Article 

    Google Scholar 

  • Moles, A. T. & Westoby, M. Seedling survival and seed size: A synthesis of the literature. J. Ecol. 92, 372–383 (2004).

    Article 

    Google Scholar 

  • Kimmerer, R. W. Patterns of dispersal and establishment of bryophytes colonizing natural and experimental treefall mounds in northern hardwood forests. Bryologist 108, 391–401 (2005).

    Article 

    Google Scholar 

  • Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).

    Article 

    Google Scholar 

  • Stieha, C. R., Middleton, A. R., Stieha, J. K., Trott, S. H. & Mcletchie, D. N. The dispersal process of asexual propagules and the contribution to population persistence in Marchantia (Marchantiaceae). Am. J. Bot. 101, 348–356 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Hugonnot, V. Comparative investigations of niche, growth rates and reproduction between the native moss Campylopus pilifer and the invasive C. introflexus. J. Bryol. 39, 79–84 (2017).

    Article 

    Google Scholar 

  • Benscoter, B. W. Post-fire bryophyte establishment in a continental bog. J. Veg. Sci. 17, 647–652 (2006).

    Article 

    Google Scholar 

  • Esposito, A., Mazzoleni, S. & Strumia, S. Post-fire bryophyte dynamics in Mediterranean vegetation. J. Veg. Sci. 10, 261–268 (1999).

    Article 

    Google Scholar 

  • Naeth, M. A. & Wilkinson, S. R. Establishment of restoration trajectories for upland tundra communities on diamond mine wastes in the Canadian arctic. Restor. Ecol. 22, 534–543 (2014).

    Article 

    Google Scholar 

  • Lamarre, J. J. M. Tundra bryophyte revegetation: novel methods for revegetating northern ecosystems (University of Alberta, 2016).

  • Dierßen, K. Distribution, ecological amplitude and phytosociological characterization of European bryophytes. (Bryophytorum Bibliotheca 56. J. Cramer, Berlin, 289 pp., 2001).

  • Smith, A. J. E. The moss flora of Britain and Ireland (Cambridge University Press, 2004).

    Book 

    Google Scholar 

  • Casas, C., Brugués, M., Cros, R. M. & Sérgio, C. Handbook of Mosses of the Iberian Peninsula and the Balearic Islands. (Instituts d’Estudis Catalans, 2006).

  • Medina, N., Mazimpaka Nibarere, V., Hortal, J. & Lara García, F. Catálogo de los briófitos epífitos que crecen en bosques de quercíneas del cuadrante noroccidental ibérico. Boletín la Soc. Esp. Briol. 30, 1–30 (2015).

    Google Scholar 

  • Ron Alvarez, M. E. & Vicente, J. Contribución al conocimiento de la flora briológica de Canencia, Sierra de Guadarrama (Madrid). Bot. Complut. https://doi.org/10.5209/BOCM.7415 (1989).

    Article 

    Google Scholar 

  • Pressel, S., Matcham, H. W. & Duckett, J. G. Studies of protonemal morphogenesis in mosses. XI. Bryum and allied genera: A plethora of propagules. J. Bryol. 29, 241–258 (2007).

    Article 

    Google Scholar 

  • Söderström, L. & Herben, T. Dynamics of bryophyte metapopulations. in Advances in Briology 6. Population studies (ed. Longton, R. E.) 6, 205–240 (International Association of Briologists. Schweizerbart Science Publishers, 1997).

    Google Scholar 

  • Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cox, E. P. A method of assigning numerical and percentage values to the degree of roundness of sand grains. J. Paleontol. 1, 179–183 (1927).

    Google Scholar 

  • R Core Team. R: A language and environment for Statistical Computing (2021).

  • Kassambara, A. rstatix: Pipe-friendly framework for basic statistical tests (2020).

  • Zeileis, A., Meyer, D. & Hornik, K. Residual-based shadings for visualizing (conditional) independence. J. Comput. Graph. Stat. 16, 507–525 (2007).

    Article 
    MathSciNet 

    Google Scholar 

  • Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A grammar of Data Manipulation (2022).

  • Fox, J. & Weisberg, S. An R Companion to Applied Regression (2019).

  • Maechler, M. et al. robustbase: Basic Robust Statistics (2022).

  • Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots (2020).

  • Revelle, W. psych: Procedures for psychological, psychometric, and personality research (2021).

  • Kuhn, M., Jackson, S. & Cimentada, J. corrr: correlations in R. R package version 0.4.3 (2020).

  • Wei, T. & Simko, V. R package ‘corrplot’: visualization of a correlation matrix (Version 0.84) (2017).

  • Wilke, C. O. ggtext: improved text rendering support for ‘ggplot2’ (2020).

  • Auguie, B. gridExtra: miscellaneous functions for ‘Grid’ graphics (2017).

  • Wilke, C. O. cowplot: streamlined plot theme and plot annotations for ‘ggplot2’. R package version 1.1.1 (2020).

  • Stark, L. R., Nichols, L. II., McLetchie, D. N., Smith, S. D. & Zundel, C. Age and sex-specific rates of leaf regeneration in the Mojave Desert moss Syntrichia caninervis. Am. J. Bot. 91, 1–9 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Fernandez-Mendoza, F., Estebanez, B., Gomez-Sanz, D. & Ron, E. Sporophyte-bearing specimens of Pleurochaete squarrosa in Zamora, Spain. Cryptogam. Bryol. 23, 211–215 (2002).

    Google Scholar 

  • Chen, K. H., Liao, H. L., Arnold, A. E., Bonito, G. & Lutzoni, F. RNA-based analyses reveal fungal communities structured by a senescence gradient in the moss Dicranum scoparium and the presence of putative multi-trophic fungi. New Phytol. 218, 1597–1611 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kruijer, H. J. D., Raes, N. & Stech, M. Modelling the distribution of the moss species Hypopterygium tamarisci (Hypopterygiaceae, Bryophyta) in Central and South America. Nov. Hedwigia 91, 399–420 (2010).

    Article 

    Google Scholar 

  • Van Zanten, B. O. Preliminary report on germination experiments designed to estimate the survival chances of moss spores during aerial trans-oceanic long-range dispersal in the Southern Hemisphere, with particular reference to New Zealand. J. Hattori Bot. Lab. 41, 133–140 (1976).

    Google Scholar 

  • Van Zanten, B. O. Experimental studies on trans-oceanic long-range dispersal of moss spores in the Southern Hemisphere. J. Hattori Bot. Lab. 44, 455–482 (1978).

    Google Scholar 

  • De Meester, L., Gómez, A., Okamura, B. & Schwenk, K. The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecologica 23, 121–135 (2002).

    Article 

    Google Scholar 

  • Izquieta-Rojano, S. et al. Pleurochaete squarrosa (Brid.) Lindb. as an alternative moss species for biomonitoring surveys of heavy metal, nitrogen deposition and δ15N signatures in a Mediterranean area. Ecol. Indic. 60, 1221–1228 (2016).

    Article 
    CAS 

    Google Scholar 

  • Kimmerer, R. W. & Young, C. C. Effect of gap size and regeneration niche on species coexistence in bryophyte communities. J. Torrey Bot. Soc. 123, 16–24 (1996).

    Article 

    Google Scholar 

  • Refoyo, P., Peláez, M., García-Rodríguez, M., López-Sánchez, A. & Perea, R. Moss cover and browsing scores as sustainability indicators of mountain ungulate populations in Mediterranean environments. Biodivers. Conserv. https://doi.org/10.1007/s10531-022-02454-1 (2022).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Features of urban green spaces associated with positive emotions, mindfulness and relaxation

    Using game engines and “twins” to co-create stories of climate futures