in

Younger trees in the upper canopy are more sensitive but also more resilient to drought

  • Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Article 
    CAS 

    Google Scholar 

  • Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).

    Article 
    CAS 

    Google Scholar 

  • De Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019).

    Article 

    Google Scholar 

  • Anderegg, W. R., Kane, J. M. & Anderegg, L. D. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Change 3, 30–36 (2013).

    Article 

    Google Scholar 

  • Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 129 (2015).

    Article 

    Google Scholar 

  • Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).

    Article 
    CAS 

    Google Scholar 

  • Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).

    Article 
    CAS 

    Google Scholar 

  • Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).

    Article 
    CAS 

    Google Scholar 

  • Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).

    Article 

    Google Scholar 

  • Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).

    Article 
    CAS 

    Google Scholar 

  • Anderegg, W. R. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).

    Article 
    CAS 

    Google Scholar 

  • Anderegg, W. R., Trugman, A. T., Badgley, G., Konings, A. G. & Shaw, J. Divergent forest sensitivity to repeated extreme droughts. Nat. Clim. Change 10, 1091–1095 (2020).

    Article 

    Google Scholar 

  • Zhang, T., Niinemets, Ü., Sheffield, J. & Lichstein, J. W. Shifts in tree functional composition amplify the response of forest biomass to climate. Nature 556, 99–102 (2018).

    Article 
    CAS 

    Google Scholar 

  • Engelbrecht, B. M. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).

    Article 
    CAS 

    Google Scholar 

  • Lenoir, J., Gégout, J.-C., Marquet, P., De Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).

    Article 
    CAS 

    Google Scholar 

  • Au, T. F. et al. Demographic shifts in eastern US forests increase the impact of late‐season drought on forest growth. Ecography 43, 1475–1486 (2020).

    Article 

    Google Scholar 

  • Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).

    Article 
    CAS 

    Google Scholar 

  • Lindenmayer, D. B., Laurance, W. F. & Franklin, J. F. Global decline in large old trees. Science 338, 1305–1306 (2012).

    Article 
    CAS 

    Google Scholar 

  • McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ellsworth, D. & Reich, P. Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96, 169–178 (1993).

    Article 
    CAS 

    Google Scholar 

  • Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93 (2014).

    Article 
    CAS 

    Google Scholar 

  • Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    Article 
    CAS 

    Google Scholar 

  • Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).

    Article 

    Google Scholar 

  • Piovesan, G. & Biondi, F. On tree longevity. N. Phytol. 231, 1318–1337 (2021).

    Article 

    Google Scholar 

  • Jucker, T. et al. Tallo: a global tree allometry and crown architecture database. Glob. Change Biol. 28, 5254–5268 (2022).

    Article 
    CAS 

    Google Scholar 

  • Körner, C. A matter of tree longevity. Science 355, 130–131 (2017).

    Article 

    Google Scholar 

  • D’orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Change Biol. 24, 2339–2351 (2018).

    Article 

    Google Scholar 

  • Luo, Y. & Chen, H. Y. Observations from old forests underestimate climate change effects on tree mortality. Nat. Commun. 4, 1655 (2013).

    Article 

    Google Scholar 

  • Dannenberg, M. P., Wise, E. K. & Smith, W. K. Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes. Sci. Adv. 5, eaaw0667 (2019).

    Article 

    Google Scholar 

  • Anderegg, W. R. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).

    Article 
    CAS 

    Google Scholar 

  • McCormick, E. L. et al. Widespread woody plant use of water stored in bedrock. Nature 597, 225–229 (2021).

    Article 
    CAS 

    Google Scholar 

  • Giardina, F. et al. Tall Amazonian forests are less sensitive to precipitation variability. Nat. Geosci. 11, 405–409 (2018).

    Article 
    CAS 

    Google Scholar 

  • Phillips, R. P. et al. A belowground perspective on the drought sensitivity of forests: towards improved understanding and simulation. For. Ecol. Manage. 380, 309–320 (2016).

    Article 

    Google Scholar 

  • Meinzer, F. C., Lachenbruch, B. & Dawson, T. E. Size- and Age-Related Changes in Tree Structure and Function Vol. 4 (Springer, 2011).

  • Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).

    Article 
    CAS 

    Google Scholar 

  • Klein, T. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct. Ecol. 28, 1313–1320 (2014).

    Article 

    Google Scholar 

  • Cavender-Bares, J. & Bazzaz, F. Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Oecologia 124, 8–18 (2000).

    Article 
    CAS 

    Google Scholar 

  • Gallé, A., Haldimann, P. & Feller, U. Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. N. Phytol. 174, 799–810 (2007).

    Article 

    Google Scholar 

  • Keith, H., Mackey, B. G. & Lindenmayer, D. B. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc. Natl Acad. Sci. USA 106, 11635–11640 (2009).

    Article 
    CAS 

    Google Scholar 

  • Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).

    Article 
    CAS 

    Google Scholar 

  • Zhao, S. et al. The International Tree‐Ring Data Bank (ITRDB) revisited: data availability and global ecological representativity. J. Biogeogr. 46, 355–368 (2019).

    Article 

    Google Scholar 

  • Fisher, R. A. et al. Vegetation demographics in Earth system models: a review of progress and priorities. Glob. Change Biol. 24, 35–54 (2018).

    Article 

    Google Scholar 

  • Rayback, S. A. et al. The DendroEcological Network: a cyberinfrastructure for the storage, discovery and sharing of tree-ring and associated ecological data. Dendrochronologia 60, 125678 (2020).

    Article 

    Google Scholar 

  • Maxwell, J. T. et al. Sampling density and date along with species selection influence spatial representation of tree-ring reconstructions. Climate of the Past 16, 1901–1916 (2020).

    Article 

    Google Scholar 

  • Maxwell, J. T. et al. Higher CO2 concentrations and lower acidic deposition have not changed drought response in tree growth but do influence iWUE in hardwood trees in the Midwestern USA. J. Geophys. Res. Biogeosci. 124, 3798–3813 (2019).

    Article 
    CAS 

    Google Scholar 

  • Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).

    Article 

    Google Scholar 

  • R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021); https://www.R-project.org/

  • Cook, E. R. & Kairiukstis, L. A. Methods of Dendrochronology: Applications in the Environmental Sciences (Springer, 2013).

  • Cook, E. R. & Peters, K. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull. 41, 45–53 (1981).

    Google Scholar 

  • Fritts, H. Tree Rings and Climate (Academic Press, 1976).

    Google Scholar 

  • Wilson, R. et al. Last millennium Northern Hemisphere summer temperatures from tree rings: part I: the long term context. Quat. Sci. Rev. 134, 1–18 (2016).

    Article 

    Google Scholar 

  • Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).

    Article 

    Google Scholar 

  • Holmes, R. Program COFECHA User’s Manual (Univ. Arizona Laboratory of Tree-Ring Research, 1983).

  • Palmer, J. G. et al. Drought variability in the eastern Australia and New Zealand summer drought atlas (ANZDA, CE 1500–2012) modulated by the Interdecadal Pacific Oscillation. Environ. Res. Lett. 10, 124002 (2015).

    Article 

    Google Scholar 

  • Cook, E. R. et al. Asian monsoon failure and megadrought during the last millennium. Science 328, 486–489 (2010).

    Article 
    CAS 

    Google Scholar 

  • Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M. & Stahle, D. W. Long-term aridity changes in the western United States. Science 306, 1015–1018 (2004).

    Article 
    CAS 

    Google Scholar 

  • Cook, E. R. et al. Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long‐term palaeoclimate context. J. Quat. Sci. 25, 48–61 (2010).

    Article 

    Google Scholar 

  • Cook, E. R. et al. Old World megadroughts and pluvials during the Common Era. Sci. Adv. 1, e1500561 (2015).

    Article 

    Google Scholar 

  • Morales, M. S. et al. Six hundred years of South American tree rings reveal an increase in severe hydroclimatic events since mid-20th century. Proc. Natl Acad. Sci. USA 117, 16816–16823 (2020).

    Article 
    CAS 

    Google Scholar 

  • Stokes, M. & Smiley, T. An Introduction to Tree-Ring Dating. (Univ. Chicago Press, 1968).

    Google Scholar 

  • Lockwood, B. R., Maxwell, J. T., Robeson, S. M, & Au, T. F. Assessing bias in diameter at breast height estimated from tree rings and its effects on basal area increment and biomass. Dendrochronologia 67, 125844 (2021).

  • Locosselli, G. M. et al. Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature. Proc. Natl Acad. Sci. USA 117, 33358–33364 (2020).

    Article 
    CAS 

    Google Scholar 

  • Rozas, V., DeSoto, L. & Olano, J. M. Sex‐specific, age‐dependent sensitivity of tree‐ring growth to climate in the dioecious tree Juniperus thurifera. N. Phytol. 182, 687–697 (2009).

    Article 

    Google Scholar 

  • Carrer, M. & Urbinati, C. Age‐dependent tree‐ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85, 730–740 (2004).

    Article 

    Google Scholar 

  • Gazol, A., Camarero, J., Anderegg, W. & Vicente‐Serrano, S. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Glob. Ecol. Biogeogr. 26, 166–176 (2017).

    Article 

    Google Scholar 

  • Li, X. et al. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nat. Ecol. Evol. 4, 1075–1083 (2020).

    Article 

    Google Scholar 

  • Pardos, M. et al. The greater resilience of mixed forests to drought mainly depends on their composition: analysis along a climate gradient across Europe. For. Ecol. Manage. 481, 118687 (2021).

    Article 

    Google Scholar 

  • Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: thestandardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).

    Article 

    Google Scholar 

  • Wood, S. N. Generalized Additive Models: An Introduction with R (CRC Press, 2017).

  • Rollinson, C. R. et al. Climate sensitivity of understory trees differs from overstory trees in temperate mesic forests. Ecology 102, e03264 (2021).

    Article 

    Google Scholar 

  • Lloret, F., Keeling, E. G. & Sala, A. Components of tree resilience: effects of successive low‐growth episodes in old ponderosa pine forests. Oikos 120, 1909–1920 (2011).

    Article 

    Google Scholar 

  • Li, X. et al. Reply to: Disentangling biology from mathematical necessity in twentieth-century gymnosperm resilience trends. Nat. Ecol. Evol. 5, 736–737 (2021).

    Article 

    Google Scholar 

  • Zheng, T. et al. Disentangling biology from mathematical necessity in twentieth-century gymnosperm resilience trends. Nat. Ecol. Evol. 5, 733–735 (2021).

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • Long, J. A. jtools: Analysis and Presentation of Social Scientific Data R Package v.2.2.0 https://cran.r-project.org/package=jtools (2022).

  • Mazerolle, M. J. AICcmodavg: Model Selection and Multimodel Inference Based on AIC R Package v.2.3-1 https://cran.r-project.org/package=AICcmodavg (2020).

  • Au, T. F. Au_et_al_NCC.R. Figshare https://doi.org/10.6084/m9.figshare.21263676.v1 (2022).


  • Source: Ecology - nature.com

    Features of urban green spaces associated with positive emotions, mindfulness and relaxation

    Using game engines and “twins” to co-create stories of climate futures