Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).
Google Scholar
Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).
Google Scholar
De Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019).
Google Scholar
Anderegg, W. R., Kane, J. M. & Anderegg, L. D. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Change 3, 30–36 (2013).
Google Scholar
Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 129 (2015).
Google Scholar
Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).
Google Scholar
Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).
Google Scholar
Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).
Google Scholar
Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).
Google Scholar
Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).
Google Scholar
Anderegg, W. R. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).
Google Scholar
Anderegg, W. R., Trugman, A. T., Badgley, G., Konings, A. G. & Shaw, J. Divergent forest sensitivity to repeated extreme droughts. Nat. Clim. Change 10, 1091–1095 (2020).
Google Scholar
Zhang, T., Niinemets, Ü., Sheffield, J. & Lichstein, J. W. Shifts in tree functional composition amplify the response of forest biomass to climate. Nature 556, 99–102 (2018).
Google Scholar
Engelbrecht, B. M. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).
Google Scholar
Lenoir, J., Gégout, J.-C., Marquet, P., De Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).
Google Scholar
Au, T. F. et al. Demographic shifts in eastern US forests increase the impact of late‐season drought on forest growth. Ecography 43, 1475–1486 (2020).
Google Scholar
Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).
Google Scholar
Lindenmayer, D. B., Laurance, W. F. & Franklin, J. F. Global decline in large old trees. Science 338, 1305–1306 (2012).
Google Scholar
McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).
Google Scholar
Ellsworth, D. & Reich, P. Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96, 169–178 (1993).
Google Scholar
Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93 (2014).
Google Scholar
Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
Google Scholar
Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).
Google Scholar
Piovesan, G. & Biondi, F. On tree longevity. N. Phytol. 231, 1318–1337 (2021).
Google Scholar
Jucker, T. et al. Tallo: a global tree allometry and crown architecture database. Glob. Change Biol. 28, 5254–5268 (2022).
Google Scholar
Körner, C. A matter of tree longevity. Science 355, 130–131 (2017).
Google Scholar
D’orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Change Biol. 24, 2339–2351 (2018).
Google Scholar
Luo, Y. & Chen, H. Y. Observations from old forests underestimate climate change effects on tree mortality. Nat. Commun. 4, 1655 (2013).
Google Scholar
Dannenberg, M. P., Wise, E. K. & Smith, W. K. Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes. Sci. Adv. 5, eaaw0667 (2019).
Google Scholar
Anderegg, W. R. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).
Google Scholar
McCormick, E. L. et al. Widespread woody plant use of water stored in bedrock. Nature 597, 225–229 (2021).
Google Scholar
Giardina, F. et al. Tall Amazonian forests are less sensitive to precipitation variability. Nat. Geosci. 11, 405–409 (2018).
Google Scholar
Phillips, R. P. et al. A belowground perspective on the drought sensitivity of forests: towards improved understanding and simulation. For. Ecol. Manage. 380, 309–320 (2016).
Google Scholar
Meinzer, F. C., Lachenbruch, B. & Dawson, T. E. Size- and Age-Related Changes in Tree Structure and Function Vol. 4 (Springer, 2011).
Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).
Google Scholar
Klein, T. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct. Ecol. 28, 1313–1320 (2014).
Google Scholar
Cavender-Bares, J. & Bazzaz, F. Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Oecologia 124, 8–18 (2000).
Google Scholar
Gallé, A., Haldimann, P. & Feller, U. Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. N. Phytol. 174, 799–810 (2007).
Google Scholar
Keith, H., Mackey, B. G. & Lindenmayer, D. B. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc. Natl Acad. Sci. USA 106, 11635–11640 (2009).
Google Scholar
Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).
Google Scholar
Zhao, S. et al. The International Tree‐Ring Data Bank (ITRDB) revisited: data availability and global ecological representativity. J. Biogeogr. 46, 355–368 (2019).
Google Scholar
Fisher, R. A. et al. Vegetation demographics in Earth system models: a review of progress and priorities. Glob. Change Biol. 24, 35–54 (2018).
Google Scholar
Rayback, S. A. et al. The DendroEcological Network: a cyberinfrastructure for the storage, discovery and sharing of tree-ring and associated ecological data. Dendrochronologia 60, 125678 (2020).
Google Scholar
Maxwell, J. T. et al. Sampling density and date along with species selection influence spatial representation of tree-ring reconstructions. Climate of the Past 16, 1901–1916 (2020).
Google Scholar
Maxwell, J. T. et al. Higher CO2 concentrations and lower acidic deposition have not changed drought response in tree growth but do influence iWUE in hardwood trees in the Midwestern USA. J. Geophys. Res. Biogeosci. 124, 3798–3813 (2019).
Google Scholar
Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).
Google Scholar
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021); https://www.R-project.org/
Cook, E. R. & Kairiukstis, L. A. Methods of Dendrochronology: Applications in the Environmental Sciences (Springer, 2013).
Cook, E. R. & Peters, K. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull. 41, 45–53 (1981).
Fritts, H. Tree Rings and Climate (Academic Press, 1976).
Wilson, R. et al. Last millennium Northern Hemisphere summer temperatures from tree rings: part I: the long term context. Quat. Sci. Rev. 134, 1–18 (2016).
Google Scholar
Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).
Google Scholar
Holmes, R. Program COFECHA User’s Manual (Univ. Arizona Laboratory of Tree-Ring Research, 1983).
Palmer, J. G. et al. Drought variability in the eastern Australia and New Zealand summer drought atlas (ANZDA, CE 1500–2012) modulated by the Interdecadal Pacific Oscillation. Environ. Res. Lett. 10, 124002 (2015).
Google Scholar
Cook, E. R. et al. Asian monsoon failure and megadrought during the last millennium. Science 328, 486–489 (2010).
Google Scholar
Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M. & Stahle, D. W. Long-term aridity changes in the western United States. Science 306, 1015–1018 (2004).
Google Scholar
Cook, E. R. et al. Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long‐term palaeoclimate context. J. Quat. Sci. 25, 48–61 (2010).
Google Scholar
Cook, E. R. et al. Old World megadroughts and pluvials during the Common Era. Sci. Adv. 1, e1500561 (2015).
Google Scholar
Morales, M. S. et al. Six hundred years of South American tree rings reveal an increase in severe hydroclimatic events since mid-20th century. Proc. Natl Acad. Sci. USA 117, 16816–16823 (2020).
Google Scholar
Stokes, M. & Smiley, T. An Introduction to Tree-Ring Dating. (Univ. Chicago Press, 1968).
Lockwood, B. R., Maxwell, J. T., Robeson, S. M, & Au, T. F. Assessing bias in diameter at breast height estimated from tree rings and its effects on basal area increment and biomass. Dendrochronologia 67, 125844 (2021).
Locosselli, G. M. et al. Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature. Proc. Natl Acad. Sci. USA 117, 33358–33364 (2020).
Google Scholar
Rozas, V., DeSoto, L. & Olano, J. M. Sex‐specific, age‐dependent sensitivity of tree‐ring growth to climate in the dioecious tree Juniperus thurifera. N. Phytol. 182, 687–697 (2009).
Google Scholar
Carrer, M. & Urbinati, C. Age‐dependent tree‐ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85, 730–740 (2004).
Google Scholar
Gazol, A., Camarero, J., Anderegg, W. & Vicente‐Serrano, S. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Glob. Ecol. Biogeogr. 26, 166–176 (2017).
Google Scholar
Li, X. et al. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nat. Ecol. Evol. 4, 1075–1083 (2020).
Google Scholar
Pardos, M. et al. The greater resilience of mixed forests to drought mainly depends on their composition: analysis along a climate gradient across Europe. For. Ecol. Manage. 481, 118687 (2021).
Google Scholar
Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: thestandardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).
Google Scholar
Wood, S. N. Generalized Additive Models: An Introduction with R (CRC Press, 2017).
Rollinson, C. R. et al. Climate sensitivity of understory trees differs from overstory trees in temperate mesic forests. Ecology 102, e03264 (2021).
Google Scholar
Lloret, F., Keeling, E. G. & Sala, A. Components of tree resilience: effects of successive low‐growth episodes in old ponderosa pine forests. Oikos 120, 1909–1920 (2011).
Google Scholar
Li, X. et al. Reply to: Disentangling biology from mathematical necessity in twentieth-century gymnosperm resilience trends. Nat. Ecol. Evol. 5, 736–737 (2021).
Google Scholar
Zheng, T. et al. Disentangling biology from mathematical necessity in twentieth-century gymnosperm resilience trends. Nat. Ecol. Evol. 5, 733–735 (2021).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
Long, J. A. jtools: Analysis and Presentation of Social Scientific Data R Package v.2.2.0 https://cran.r-project.org/package=jtools (2022).
Mazerolle, M. J. AICcmodavg: Model Selection and Multimodel Inference Based on AIC R Package v.2.3-1 https://cran.r-project.org/package=AICcmodavg (2020).
Au, T. F. Au_et_al_NCC.R. Figshare https://doi.org/10.6084/m9.figshare.21263676.v1 (2022).
Source: Ecology - nature.com