Knight, H. et al. Impacts of the COVID-19 Pandemic and Self-Isolation on Students and Staff in Higher Education: A Qualitative Study. Int. J. Environ. Res. Public Health 18, 10675 (2021).
Google Scholar
Higham, J. E., Ramírez, C. A., Green, M. A. & Morse, A. P. UK COVID-19 lockdown: 100 days of air pollution reduction? Air Quality. Atmosphere & Health https://doi.org/10.1007/s11869-020-00937-0 (2020).
Google Scholar
Office, P. M. s. Slides and datasets to accompany coronavirus press conference. (2020).
Organization, W. H. WHO global air quality guidelines: particulate matter (PM2. 5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide: executive summary. (2021).
Singh, A. et al. Impacts of emergency health protection measures upon air quality, traffic and public health: evidence from Oxford UK. Environ. Pollut. 293, 118584. https://doi.org/10.1016/j.envpol.2021.118584 (2022).
Google Scholar
Shi, Z. et al. Abrupt but smaller than expected changes in surface air quality attributable to COVID-19 lockdowns. Science Advances 7, eabd6696, doi:doi:https://doi.org/10.1126/sciadv.abd6696 (2021).
Lee, J. D., Drysdale, W. S., Finch, D. P., Wilde, S. E. & Palmer, P. I. UK surface NO2 levels dropped by 42% during the COVID-19 lockdown: impact on surface O3. Atmos. Chem. Phys. 20, 15743–15759. https://doi.org/10.5194/acp-20-15743-2020 (2020).
Google Scholar
Shi, Z. et al. Abrupt but smaller than expected changes in surface air quality attributable to COVID-19 lockdowns. Science Advances 7, eabd6696, doi:https://doi.org/10.1126/sciadv.abd6696 (2021).
Ropkins, K. & Tate, J. E. Early observations on the impact of the COVID-19 lockdown on air quality trends across the UK. Sci. Total Environ. 754, 142374. https://doi.org/10.1016/j.scitotenv.2020.142374 (2021).
Google Scholar
Nwanaji-Enwerem, J. C., Allen, J. G. & Beamer, P. I. Another invisible enemy indoors: COVID-19, human health, the home, and United States indoor air policy. J Expo Sci Environ Epidemiol 30, 773–775. https://doi.org/10.1038/s41370-020-0247-x (2020).
Google Scholar
Rasha, A., Karan Jetly, J. & Shqran, S. Indoor Air Quality Monitoring Systems: A Comprehensive Review of Different IAQM Systems. International Journal of Knowledge-Based Organizations (IJKBO) 11, 1–14, doi:https://doi.org/10.4018/ijkbo.2021070101 (2021).
World Health Organization. Regional Office for, E. WHO guidelines for indoor air quality: selected pollutants. xxv, 454 p. (World Health Organization. Regional Office for Europe, 2010).
Stafoggia, M. et al. Long-term exposure to ambient air pollution and incidence of cerebrovascular events: Results from 11 European cohorts within the ESCAPE project. Environ. Health Perspect 122, 919–925. https://doi.org/10.1289/ehp.1307301 (2014).
Google Scholar
Brook, R. D. et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American heart association. Circulation 121, 2331–2378. https://doi.org/10.1161/CIR.0b013e3181dbece1 (2010).
Google Scholar
Raaschou-Nielsen, O. et al. Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European study of cohorts for air pollution effects (ESCAPE). Lancet Oncol. 14, 813–822. https://doi.org/10.1016/s1470-2045(13)70279-1 (2013).
Google Scholar
Guan, W. J., Zheng, X. Y., Chung, K. F. & Zhong, N. S. Impact of air pollution on the burden of chronic respiratory diseases in China: Time for urgent action. Lancet 388, 1939–1951. https://doi.org/10.1016/s0140-6736(16)31597-5 (2016).
Google Scholar
Atkinson, R. W. et al. Acute effects of particulate air pollution on respiratory admissions: Results from APHEA 2 project. Air pollution and health: A European approach. Am. J. Respir. Crit. Care Med. 164, 1860–1866. https://doi.org/10.1164/ajrccm.164.10.2010138 (2001).
Google Scholar
Stapleton, F. et al. TFOS DEWS II epidemiology report. Ocular Surf. 15, 334–365. https://doi.org/10.1016/j.jtos.2017.05.003 (2017).
Google Scholar
Starr, C. E. et al. Dry eye disease flares: A rapid evidence assessment. Ocul. Surf. 22, 51–59. https://doi.org/10.1016/j.jtos.2021.07.001 (2021).
Google Scholar
Torricelli, A. A. et al. Correlation between signs and symptoms of ocular surface dysfunction and tear osmolarity with ambient levels of air pollution in a large metropolitan area. Cornea 32, e11-15. https://doi.org/10.1097/ICO.0b013e31825e845d (2013).
Google Scholar
Hwang, S. H. et al. Potential importance of ozone in the association between outdoor air pollution and dry eye disease in South Korea. JAMA Ophthalmol. 134, 503–510. https://doi.org/10.1001/jamaophthalmol.2016.0139 (2016).
Google Scholar
Wiwatanadate, P. Acute air pollution-related symptoms among residents in Chiang Mai Thailand. J. Environ. Health 76, 76–84 (2014).
Google Scholar
Alves, M., Novaes, P., Morraye Mde, A., Reinach, P. S. & Rocha, E. M. Is dry eye an environmental disease? Arq. Bras. Oftalmol. 77, 193–200 https://doi.org/10.5935/0004-2749.20140050 (2014).
Bourcier, T. et al. Effects of air pollution and climatic conditions on the frequency of ophthalmological emergency examinations. Br. J. Ophthalmol. 87, 809–811. https://doi.org/10.1136/bjo.87.7.809 (2003).
Google Scholar
Hao, R. et al. Impact of air pollution on the ocular surface and tear cytokine levels: A multicenter prospective cohort study. Front. Med. (Lausanne) 9, 909330. https://doi.org/10.3389/fmed.2022.909330 (2022).
Google Scholar
Vehof, J., Snieder, H., Jansonius, N. & Hammond, C. J. Prevalence and risk factors of dry eye in 79,866 participants of the population-based lifelines cohort study in the Netherlands. Ocul. Surf. 19, 83–93. https://doi.org/10.1016/j.jtos.2020.04.005 (2021).
Google Scholar
Wolffsohn, J. S. et al. Demographic and lifestyle risk factors of dry eye disease subtypes: A cross-sectional study. Ocul. Surf. 21, 58–63. https://doi.org/10.1016/j.jtos.2021.05.001 (2021).
Google Scholar
Núñez-Álvarez, C. & Osborne, N. N. Enhancement of corneal epithelium cell survival, proliferation and migration by red light: Relevance to corneal wound healing. Exp. Eye Res. 180, 231–241. https://doi.org/10.1016/j.exer.2019.01.003 (2019).
Google Scholar
Marek, V. et al. Blue light phototoxicity toward human corneal and conjunctival epithelial cells in basal and hyperosmolar conditions. Free Radic. Biol. Med. 126, 27–40. https://doi.org/10.1016/j.freeradbiomed.2018.07.012 (2018).
Google Scholar
Talens-Estarelles, C., García-Marqués, J. V., Cerviño, A. & García-Lázaro, S. Determining the best management strategy for preventing short-term effects of digital display use on dry eyes. Eye Contact Lens 48, 416–423. https://doi.org/10.1097/icl.0000000000000921 (2022).
Google Scholar
GOV.UK. COVID-19: guidance on protecting people defined on medical grounds as extremely vulnerable, <https://www.gov.uk/government/publications/guidance-on-shielding-and-protecting-extremely-vulnerable-persons-from-covid-19> (2020).
Joy, M. et al. Reorganisation of primary care for older adults during COVID-19: A cross-sectional database study in the UK. Br. J. Gen. Pract. 70, e540–e547. https://doi.org/10.3399/bjgp20X710933 (2020).
Google Scholar
Schiffman, R. M., Christianson, M. D., Jacobsen, G., Hirsch, J. D. & Reis, B. L. Reliability and validity of the ocular surface disease index. Arch. Ophthalmol. 118, 615–621. https://doi.org/10.1001/archopht.118.5.615 (2000).
Google Scholar
Amparo, F. & Dana, R. Web-based longitudinal remote assessment of dry eye symptoms. Ocul. Surf. 16, 249–253. https://doi.org/10.1016/j.jtos.2018.01.002 (2018).
Google Scholar
Inomata, T. et al. Characteristics and risk factors associated with diagnosed and undiagnosed symptomatic dry eye using a smartphone application. JAMA Ophthalmol. 138, 58–68. https://doi.org/10.1001/jamaophthalmol.2019.4815 (2020).
Google Scholar
Toth, M. & Jokić-Begić, N. Psychological contribution to understanding the nature of dry eye disease: A cross-sectional study of anxiety sensitivity and dry eyes. Health Psychol. Behav. Med. 8, 202–219. https://doi.org/10.1080/21642850.2020.1770093 (2020).
Google Scholar
Mehra, D. & Galor, A. Digital screen use and dry eye: A review. Asia-Pacific J. Ophthalmol. 9, 491–497. https://doi.org/10.1097/apo.0000000000000328 (2020).
Google Scholar
Galor, A., Kumar, N., Feuer, W. & Lee, D. J. Environmental factors affect the risk of dry eye syndrome in a United States veteran population. Ophthalmology 121, 972–973. https://doi.org/10.1016/j.ophtha.2013.11.036 (2014).
Google Scholar
Courtin, R. et al. Prevalence of dry eye disease in visual display terminal workers: A systematic review and meta-analysis. BMJ Open 6, e009675. https://doi.org/10.1136/bmjopen-2015-009675 (2016).
Google Scholar
Torricelli, A. A. et al. Effects of ambient levels of traffic-derived air pollution on the ocular surface: Analysis of symptoms, conjunctival goblet cell count and mucin 5AC gene expression. Environ. Res. 131, 59–63. https://doi.org/10.1016/j.envres.2014.02.014 (2014).
Google Scholar
Gupta, S. K., Gupta, V., Joshi, S. & Tandon, R. Subclinically dry eyes in urban Delhi: An impact of air pollution?. Ophthalmologica 216, 368–371. https://doi.org/10.1159/000066183 (2002).
Google Scholar
Berg, E. J. et al. Climatic and environmental correlates of dry eye disease severity: A report from the dry eye assessment and management (DREAM) study. Trans. Vision Sci. Technol. 9, 25–25. https://doi.org/10.1167/tvst.9.5.25 (2020).
Google Scholar
Lang, S.-J., Abel, G. A., Mant, J. & Mullis, R. Impact of socioeconomic deprivation on screening for cardiovascular disease risk in a primary prevention population: A cross-sectional study. BMJ Open 6, e009984. https://doi.org/10.1136/bmjopen-2015-009984 (2016).
Google Scholar
Denniston, A. K. et al. United Kingdom diabetic retinopathy electronic medical record (UK DR EMR) users group: Report 4, real-world data on the impact of deprivation on the presentation of diabetic eye disease at hospital services. Br. J. Ophthalmol. 103, 837–843. https://doi.org/10.1136/bjophthalmol-2018-312568 (2019).
Google Scholar
Nessim, M., Denniston, A. K., Nolan, W., Holder, R. & Shah, P. Research into Glaucoma and Ethnicity (ReGAE) 8: Is there a relationship between social deprivation and acute primary angle closure?. Br. J. Ophthalmol. 94, 1304–1306. https://doi.org/10.1136/bjo.2009.160721 (2010).
Google Scholar
Sharma, H. E. et al. The role of social deprivation in severe neovascular age-related macular degeneration. Br. J. Ophthalmol. 98, 1625–1628. https://doi.org/10.1136/bjophthalmol-2014-304959 (2014).
Google Scholar
Bo, M., Salizzoni, P., Clerico, M. & Buccolieri, R. Assessment of indoor-outdoor particulate matter air pollution: A review. Atmosphere 8, 136 (2017).
Google Scholar
Strøm-Tejsen, P., Zukowska, D., Fang, L., Space, D. R. & Wyon, D. P. Advantages for passengers and cabin crew of operating a gas-phase adsorption air purifier in 11-h simulated flights. Indoor Air 18, 172–181. https://doi.org/10.1111/j.1600-0668.2007.00511.x (2008).
Google Scholar
Mandell, J. T., Idarraga, M., Kumar, N. & Galor, A. Impact of air pollution and weather on dry eye. J. Clin. Med. https://doi.org/10.3390/jcm9113740 (2020).
Google Scholar
Navarro, D. Learning Statistics with R. (Daniel Joseph Navarro, 2015).
Source: Ecology - nature.com