Versluys, J. Die Kaubewegungen von Trachodon. Palaontol. Z. 4, 80–87 (1922).
Kripp, D. Die Kaubewegung und Lebensweise von Edmontosaurus spec. auf Grund der mechanischkonstruktiven analyse. Palaeobiologica 5, 409–422 (1933).
Ostrom, J. H. Cranial morphology of the hadrosaurian dinosaurs of North America. Bull. Am. Mus. Nat. Hist. 122, 39–186 (1961).
Ostrom, J. H. A functional analysis of jaw mechanics in the dinosaur. Triceratops. Postilla. 88, 1–35 (1964).
Google Scholar
Galton, P. M. The cheeks of ornithischian dinosaurs. Lethaia 6, 67–89. https://doi.org/10.1111/j.1502-3931.1973.tb00873.x (1973).
Google Scholar
Galton, P. M. Herbivorous adaptations of Late Triassic and Early Jurassic dinosaurs. In The Beginning of the Age of Dinosaurs (ed. Padian, K.) 203–221 (Cambridge University Press, 1986).
Weishampel, D. B. Hadrosaurid jaw mechanics. Acta Palaeontol. Pol. 28, 271–280 (1983).
Weishampel, D. B. The evolution of jaw mechanisms in ornithopod dinosaurs. Adv. Anat. Embryol. Cell. Biol. 87, 1–2 (1984).
Google Scholar
Weishampel, D. B. Interactions between Mesozoic plants and vertebrates: fructifications and seed predation. Neues Jahrb. Geol. Paläontol. Abh. 167, 224–250 (1984).
Weishampel, D. B. & Norman, D. B. Vertebrate herbivory in the Mesozoic: Jaws, plants, and evolutionary metrics. In Paleobiology of the Dinosaurs Special Papers 238 (ed. Farlow, J. O.) 87–100 (Geological Society of America, 1989).
Google Scholar
Norman, D. B. & Weishampel, D. B. Feeding mechanisms in some small herbivorous dinosaurs: processes and patterns. In Biomechanics and Evolution (eds Rayner, J. M. V. & Wooton, R. J.) 161–181 (Cambridge University Press, 1991).
Sereno, P., Zijin, Z. & Lin, T. A new psittacosaur from Inner Mongolia and the parrot-like structure and function of the psittacosaur skull. Proc. Roy. Soc. B. 277, 199–209. https://doi.org/10.1098/rspb.2009.0691 (2010).
Google Scholar
Barrett, P. M. Paleobiology of herbivorous dinosaurs. Annu. Rev. Earth Planet. Sci. 42(1), 207–230. https://doi.org/10.1146/annurev-earth-042711-105515 (2014).
Google Scholar
Erickson, G. M. et al. Wear biomechanics in the slicing dentition of the giant horned dinosaur Triceratops. Sci. Adv. 1(5), e1500055. https://doi.org/10.1126/sciadv.1500055 (2015).
Google Scholar
Nabavizadeh, A. Hadrosauroid jaw mechanics and the functionalsignificance of the predentary bone. In The hadrosaurs: Proceedings of the International Hadrosaur Symposium (eds Evans, D. & Eberth, D.) 467–482 (Indiana University Press, 2014).
Nabavizadeh, A. Evolutionary trends in the jaw adductor mechanics of ornithischian dinosaurs. Anat. Rec. 299(3), 271–294. https://doi.org/10.1002/ar.23306 (2016).
Google Scholar
Nabavizadeh, A. new reconstruction of cranial musculature in ceratopsian dinosaurs: Implications for jaw mechanics and ‘cheek’anatomy. FASEB J. 30, lb27–lb27. https://doi.org/10.1096/fasebj.30.1_supplement.lb27 (2016).
Google Scholar
Nabavizadeh, A. new reconstruction of cranial musculature in ornithischian dinosaurs: Implications for feeding mechanismsand buccal anatomy. Anat. Rec. 303, 347–362. https://doi.org/10.1002/ar.23988 (2020).
Google Scholar
Varriale, F. J. Dental microwear reveals mammal-like chewing in the neoceratopsian dinosaur Leptoceratops gracilis. PeerJ 4, e2132. https://doi.org/10.7717/peerj.2132 (2016).
Google Scholar
Melstrom, K. M., Chiappe, L. M. & Smith, N. D. Exceptionally simple, rapidly replaced teeth in sauropod dinosaurs demonstrate a novel evolutionary strategy for herbivory in Late Jurassic ecosystems. BMC Evol. Biol. 21(1), 1–12. https://doi.org/10.1186/s12862-021-01932-4 (2021).
Google Scholar
Norman, D. B. On the cranial morphology and evolution of ornithopod dinosaurs. Proc. Zool. Soc. Lond. 52, 521–547 (1984).
Norman, D. B. & Weishampel, D. B. Ornithopod feeding mechanisms: Their bearing on the evolution of herbivory. Am. Nat. 126, 151–164. https://doi.org/10.1086/284406 (1985).
Google Scholar
Norman, D. B. & Weishampel, D. B. Vegetarian dinosaurs chew it differently-living mammals can chew plants for more effectively than reptiles. Yet some dinosaurs were surprisingly adept chewers. This unexpected ability may have been crucial in their evolution. New Sci. 114(1559), 42–45 (1987).
Rybczynski, N., Tirabasso, A., Bloskie, P., Cuthbertson, R. & Holliday, C. A three-dimensional animation model of Edmontosaurus (Hadrosauridae) for testing chewing hypotheses. Palaeontol. Electron. 11(2), 9A (2008).
Williams, V. S., Barrett, P. M. & Purnell, M. A. Quantitative analysis of dental microwear in hadrosaurid dinosaurs, and the implications for hypotheses of jaw mechanics and feeding. PNAS 106(27), 11194–11199. https://doi.org/10.1073/pnas.0812631106 (2009).
Google Scholar
Cuthbertson, R. S., Tirabasso, A., Rybczynski, N. & Holmes, R. B. Kinetic limitations of intracranial joints in Brachylophosaurus canadensis and Edmontosaurus regalis (Dinosauria: Hadrosauridae), and their implications for the chewing mechanics of hadrosaurids. Anat. Rec. 295, 968–979. https://doi.org/10.1002/ar.22458 (2012).
Google Scholar
Erickson, G. M. & Zelenitsky, D. K. Osteohistology and occlusal morphology of Hypacrosaurus stebengeri teeth throughout ontogeny with comments on wear-induced form and function. In Hadrosaurs (eds Eberth, D. A. & Evans, D. C.) 422–432 (Indiana University Press, 2014).
Barrett, P. M. Tooth wear and possible jaw action of Scelidosaurus harrisonii Owen and a review of feeding mechanisms in other thyreophoran dinosaurs. In The Armored Dinosaurs (ed. Carpenter, K.) 25–52 (Indiana University Press, 2001).
Rybczynski, N. & Vickaryous, M. K. Evidence of complex jaw movement in the Late Cretaceous ankylosaurid Euoplocephalus tutus (Dinosauria: Thyreophora). In The Armored Dinosaurs (ed. Carpenter, K.) 299–317 (Indiana University Press, 2001).
Mallon, J. C. & Anderson, J. S. The functional and palaeoecological implications of tooth morphology and wear for the megaherbivorous dinosaurs from the Dinosaur Park Formation (Upper Campanian) of Alberta, Canada. PLoS ONE 9(6), e98605. https://doi.org/10.1371/journal.pone.0098605 (2014).
Google Scholar
Mallon, J. C. & Anderson, J. S. Implications of beak morphology for the evolutionary paleoecology of the megaherbivorous dinosaurs from the Dinosaur Park Formation (upper Campanian) of Alberta, Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 394, 29–41. https://doi.org/10.1016/j.palaeo.2013.11.014 (2014).
Google Scholar
Ősi, A., Barrett, P. M., Földes, T. & Tokai, R. Wear pattern, dental function, and jaw mechanism in the Late Cretaceous ankylosaur Hungarosaurus. Anat. Rec. 297(7), 1165–1180. https://doi.org/10.1002/ar.22910 (2014).
Google Scholar
Ősi, A., Prondvai, E., Mallon, J. & Bodor, E. R. Diversity and convergences in the evolution of feeding adaptations in ankylosaurs (Dinosauria: Ornithischia). Hist. Biol. 29(4), 539–570. https://doi.org/10.1080/08912963.2016.1208194 (2017).
Google Scholar
Hill, R. V., D’Emic, M. D., Bever, G. S. & Norell, M. A. A complex hyobranchial apparatus in a Cretaceous dinosaur and the antiquity of avian paraglossalia. Zool. J. Linn. Soc. 175(4), 892–909. https://doi.org/10.1111/zoj.12293 (2015).
Google Scholar
Lautenschlager, S., Brassey, C. A., Button, D. J. & Barrett, P. M. Decoupled form and function in disparate herbivorous dinosaur clades. Sci. Rep. 6(1), 1–10. https://doi.org/10.1038/srep26495 (2016).
Google Scholar
Skutschas, P. P. et al. Wear patterns and dental functioning in an Early Cretaceous stegosaur from Yakutia, Eastern Russia. PLoS ONE 16(3), e0248163. https://doi.org/10.1371/journal.pone.0248163 (2021).
Google Scholar
Strickson, E., Prieto-Márquez, A., Benton, M. J. & Stubbs, T. L. Dynamics of dental evolution in ornithopod dinosaurs. Sci. Rep. 6, 28904. https://doi.org/10.1038/srep28904 (2016).
Google Scholar
Virág, A. & Ősi, A. Morphometry, microstructure, and wear pattern of neornithischian dinosaur teeth from the Upper Cretaceous Iharkút locality (Hungary). Anat. Rec. 300(8), 1439–1463. https://doi.org/10.1002/ar.23592 (2017).
Google Scholar
Mallon, J. C. & Anderson, J. S. Skull ecomorphology of megaherbivorous dinosaurs from the Dinosaur Park Formation (Upper Campanian) of Alberta, Canada. PLoS ONE 8(7), e67182. https://doi.org/10.1371/journal.pone.0067182 (2013).
Google Scholar
Botfalvai, G., Ősi, A. & Mindszenty, A. Taphonomic and paleoecologic investigations of the Late Cretaceous (Santonian) Iharkút vertebrate assemblage (Bakony Mts, northwestern Hungary). Palaeogeogr. Palaeoclimatol. Palaeoecol. 417, 379–405. https://doi.org/10.1016/j.palaeo.2014.09.032 (2015).
Google Scholar
Botfalvai, G., Haas, J., Bodor, E. R., Mindszenty, A. & Ősi, A. Facies architecture and palaeoenvironmental implications of the upper Cretaceous (Santonian) Csehbánya formation at the Iharkút vertebrate locality (Bakony Mountains, Northwestern Hungary). Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 659–678. https://doi.org/10.1016/j.palaeo.2015.10.018 (2016).
Google Scholar
Ősi, A. et al. The Late Cretaceous continental vertebrate fauna from Iharkút, western Hungary: A review. In Bernissart Dinosaurs and Early Cretaceous Terrestrial Ecosystems (ed. Godefroit, P.) 532–569 (Indiana University Press, 2012).
Wells, N. A. Making thin sections. In Paleotechniques (eds Feldmann, R. M. et al.) 120–129 (University of Tennessee, 1989).
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675. https://doi.org/10.1038/nmeth.2089 (2012).
Google Scholar
Evans, A. R. Surfer Manipulator. http://evomorph.org/surfermanipulator (2011).
Evans, A. R., Wilson, G. P., Fortelius, M. & Jernvall, J. High-level similarity of dentitions in carnivorans and rodents. Nature 445, 78–81. https://doi.org/10.1038/nature05433 (2007).
Google Scholar
Wilson, G. P. et al. Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature 483, 457–460. https://doi.org/10.1038/nature10880 (2012).
Google Scholar
Ungar, P. S. Dental microwear of European Miocene catarrhines: Evidence for diets and tooth use. J. Hum. Evol. 31, 355–366. https://doi.org/10.1006/jhev.1996.0065 (1996).
Google Scholar
Ungar, P. S. A semiautomated image analysis procedure for the quantification of dental microwear II. Scanning. 17, 57–59. https://doi.org/10.1002/sca.4950170108 (1995).
Google Scholar
Ungar, P. S., Brown, C. A., Bergstrom, T. S. & Walker, A. Quantification of dental microwear by tandem scanning confocal microscopy and scale-sSensitive fractal analyses. Scanning 25, 185–193. https://doi.org/10.1002/sca.4950250405 (2003).
Google Scholar
Ungar, P. S., Merceron, G. & Scott, R. S. Dental microwear texture analysis of Varswater bovids and Early Pliocene paleoenvironments of langebaanweg, Western Cape Province, South Africa. J. Mammal. Evol. 14, 163–181. https://doi.org/10.1007/s10914-007-9050-x (2007).
Google Scholar
Scott, J. R. Dental microwear texture analysis of extant African Bovidae. Mammalia 76, 157–217. https://doi.org/10.1515/mammalia-2011-0083 (2012).
Google Scholar
Merceron, G., Hofman-Kaminska, E. & Kowalczyk, R. 3D dental microwear texture analysis of feeding habits of sympatric ruminants in the Białowieza Primeval Forest, Poland. For. Ecol. Manag. 328, 262–269. https://doi.org/10.1016/j.foreco.2014.05.041 (2014).
Google Scholar
Caporale, S. S. & Ungar, P. S. Rodent incisor microwear as a proxy for ecological reconstruction. Palaeogeog. Palaeocl. Palaeoecol. 446, 225–233. https://doi.org/10.1016/j.palaeo.2016.01.013 (2016).
Google Scholar
R Core Team. R. A language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2021).
Erickson, G. M. Incremental lines of von Ebner in dinosaurs and the assessment of tooth replacement rates using growth line counts. PNAS 93(25), 14623–14627. https://doi.org/10.1073/pnas.93.25.14623 (1996).
Google Scholar
Godefroit, P. et al. Extreme tooth enlargement in a new Late Cretaceous rhabdodontid dinosaur from Southern France. Sci. Rep. 7(1), 1–9. https://doi.org/10.1038/s41598-017-13160-2 (2017).
Google Scholar
Edmund, G. Tooth replacement phenomena in the lower vertebrates. Life. Sci. Contrib. R. Ont. Mus. 52, 1–190 (1960).
D’Emic, M. D., Whitlock, J. A., Smith, K. M., Fisher, D. C. & Wilson, J. A. Evolution of high tooth replacement rates in sauropod dinosaurs. PLoS ONE 8(7), e69235. https://doi.org/10.1371/journal.pone.0069235 (2013).
Google Scholar
Ősi, A., Prondvai, E., Butler, R. & Weishampel, D. B. Phylogeny, histology and inferred body size evolution in a new rhabdodontid dinosaur from the Late Cretaceous of Hungary. PLoS ONE 7(9), e44318. https://doi.org/10.1371/journal.pone.0044318 (2012).
Google Scholar
Weishampel, D. B., Jianu, C. M., Csiki, Z. & Norman, D. B. Osteology and phylogeny of Zalmoxes (ng), an unusual euornithopod dinosaur from the latest Cretaceous of Romania. J. Syst. Palaeontol. 1(2), 65–123. https://doi.org/10.1017/S1477201903001032 (2003).
Google Scholar
Melstrom, K. M. The relationship between diet and tooth complexity in living dentigerous saurians. J. Morphol. 278, 500–522 (2017).
Google Scholar
LeBlanc, A. R. H., Reisz, R. R., Evans, D. C. & Bailleul, A. M. Ontogeny reveals function and evolution of the hadrosaurid dinosaur dental battery. BMC Evol. Biol. 16(1), 1–13. https://doi.org/10.1186/s12862-016-0721-1 (2016).
Google Scholar
Erickson, G. M. et al. Complex dental structure and wear biomechanics in hadrosaurid dinosaurs. Science 338(6103), 98–101. https://doi.org/10.1126/science.1224495 (2012).
Google Scholar
Norman, D. B. & Weishampel, D. B. Iguanodontidae and related Ornithopoda. In The Dinosauria (eds Weishampel, D. B. et al.) 510–533 (University of California Press, 1990).
Hulke, J. W. An attempt at a complete osteology of Hypsilophodon foxii, a British Wealden dinosaur. Philos. Trans. R. Soc. Lond. 172, 1035–1062. https://doi.org/10.1098/rstl.1882.0025 (1882).
Google Scholar
Sternberg, C. H. Thescelosaurus edmontonensis, n. sp., and classification of the Hypsilophodontidae. J. Paleontol. 14, 481–494 (1940).
Galton, P. M. The ornithischian dinosaur Hypsilophodon from the Wealden of the Isle of Wight. Bull. Br. Mus. Nat. Hist. 25(1), 1–152 (1974).
Norman, D. B. On the anatomy of Iguanodon atherfieldensis (Ornithischia: Ornithopoda). Bull. Inst. Roy. Sci. Nat. Belgique 56, 281–372 (1986).
Norman, D. B. & Barrett, P. M. Ornithischian dinosaurs from the lower Cretaceous (Berriasian) of England. Spec. Pap. Palaeontol. 68, 161–190 (2002).
Kosch, J. C. & Zanno, L. E. Sampling impacts the assessment of tooth growth and replacement rates in archosaurs: Implications for paleontological studies. PeerJ 8, e9918. https://doi.org/10.7717/peerj.9918 (2020).
Google Scholar
Janis, C. M. & Fortelius, M. On the means whereby mammals achieve increased functional durability of their dentitions with special reference to limiting factors. Biol. Rev. 63, 197–230. https://doi.org/10.1111/j.1469-185X.1988.tb00630.x (1988).
Google Scholar
You, H., Ji, Q. & Li, D. Lanzhousaurus magnidens gen. et sp. nov. from Gansu Province, China: The largest-toothed herbivorous dinosaur in the world. Geol. Bull. Chi 24(9), 785–794 (2005).
Suarez, C. A., You, H. L., Suarez, M. B., Li, D. Q. & Trieschmann, J. B. Stable isotopes reveal rapid enamel elongation (amelogenesis) rates for the Early Cretaceous iguanodontian dinosaur Lanzhousaurus magnidens. Sci. Rep. 7, 15319. https://doi.org/10.1038/s41598-017-15653-6 (2017).
Google Scholar
Upchurch, P. & Barrett, P. M. The evolution of sauropod feeding mechanisms. In Evolution of Herbivory in Terrestrial Vertebrates: Perspectives from the Fossil Record (ed. Sues, H. D.) 79–122 (Cambridge University Press, 2000).
Google Scholar
Sereno, P. C. & Wilson, J. A. Structure and evolution of a sauropod tooth battery in Curry. In The Sauropods: Evolution and Paleobiology (eds Rogers, K. A. & Wilson, J. A.) 157–177 (University of California Press, 2005).
Brown, B. & Schlaikjer, E. M. The structure and relationships of Protoceratops. Ann. N. Y. Acad. Sci. 40(3), 133–265. https://doi.org/10.1111/j.1749-6632.1940.tb57047.x (1940).
Google Scholar
Solounias, N., Teaford, M. & Walker, A. Interpreting the diet of extinct ruminants-the case of a non-browsing giraffid. Paleobiology 14, 287–300. https://doi.org/10.1017/S009483730001201X (1988).
Google Scholar
Walker, A. & Teaford, M. Inferences from quantitative analysis of dental microwear. Folia Primatol. 53, 177–189. https://doi.org/10.1159/000156415 (1989).
Google Scholar
Ungar, P. S. Mammalian dental function and wear: A review. Biosurf. Biotribol. 1(1), 25–41. https://doi.org/10.1016/j.bsbt.2014.12.001 (2015).
Google Scholar
Janis, C. M. An estimation of tooth volume and hypsodonty indices in ungulate mammals, and the correlation of these factors with dietary preferences. Mém. Mus. Natl. Hist. Nat. Sér. C Géol. 53, 367–387 (1988).
Lucas, P. W. et al. The role of dust, grit and phytoliths in tooth wear. Ann. Zool. Fenn. 51(1–2), 143–152. https://doi.org/10.5735/086.051.0215 (2014).
Google Scholar
Winkler, D. E. et al. Shape, size, and quantity of ingested external abrasives influence dental microwear texture formation in guinea pigs. Proc. Nat. Acad. Sci. 117, 22264–22273. https://doi.org/10.1073/pnas.2008149117 (2020).
Google Scholar
Kaiser, T. M. et al. Nano-indentation of native phytoliths and dental tissues: Implications for herbivore-plant combat and dental wear proxies. Evol. Syst. 2, 55–63. https://doi.org/10.3897/evolsyst.2.22678 (2018).
Google Scholar
Winkler, D. E. et al. Forage silica and water content control dental surface texture in guinea pigs and provide implications for dietary reconstruction. Proc. Nat. Acad. Sci. 116, 1325–1330. https://doi.org/10.1073/pnas.1814081116 (2019).
Google Scholar
Ősi, A. & Makádi, L. New remains of Hungarosaurus tormai (Ankylosauria, Dinosauria) from the Upper Cretaceous of Hungary: Skeletal reconstruction and body mass estimation. Palaontol. Z. 83(2), 227–245. https://doi.org/10.1007/s12542-009-0017-5 (2009).
Google Scholar
Winkler, D. E., Schulz-Kornas, E., Kaiser, T. M. & Tütken, T. Dental microwear texture reflects dietary tendencies in extant Lepidosauria despite their limited use of oral food processing. Proc. R. Soc. B 286, 20190544. https://doi.org/10.1098/rspb.2019.0544 (2019).
Google Scholar
Bestwick, J., Unwin, D. M., Butler, R. J. & Purnell, M. A. Dietary diversity and evolution of the earliest flying vertebrates revealed by dental microwear texture analysis. Nat. Commun. 11, 1–9. https://doi.org/10.1038/s41467-020-19022-2 (2020).
Google Scholar
Sakaki, H. et al. Non-occlusal dental microwear texture analysis of a titanosauriform sauropod dinosaur from the Upper Cretaceous (Turonian) Tamagawa Formation, northeastern Japan. Cret. Res. 136, 105218. https://doi.org/10.1016/j.cretres.2022.105218 (2022).
Google Scholar
Fiorillo, A. R. Dental microwear on the teeth of Camarasaurus and Diplodocus; implications for sauropod paleoecology. In Fifth Symposium on Mesozoic Terrestrial Ecosystems and Biota (eds Kielan-Jaworowska, Z. et al.) 23–24 (Paleontologisk Museum, 1991).
Mallon, J. C., Cuthbertson, R. S. & Tirabasso, A. Hadrosaurid jaw mechanics as revealed by cranial joint limitations and dental microwear analysis. In Hadrosaur Symposium Abstract Volume (eds Braman, D. R. et al.) 87–90 (Royal Tyrrell Museum of Palaeontology, 2011).
Fiorillo, A. R. Dental microwear patterns of the sauropod dinosaurs Camarasaurus and Diplodocus: Evidence for resource partitioning in the Late Jurassic of North America. Hist. Biol. 13, 1–16. https://doi.org/10.1080/08912969809386568 (1998).
Google Scholar
Sereno, P. C. et al. Structural extremes in a Cretaceous dinosaur. PLoS ONE 2(11), e1230. https://doi.org/10.1371/journal.pone.0001230 (2007).
Google Scholar
Whitlock, J. A. Inferences of diplodocoid (Sauropoda: Dinosauria) feeding behavior from snout shape and microwear analyses. PLoS ONE 6(4), e18304. https://doi.org/10.1371/journal.pone.0018304 (2011).
Google Scholar
Fiorillo, A. R. Microwear patterns on the teeth of northern high latitude hadrosaurs with comments on microwear patterns in hadrosaurs as a function of latitude and seasonal ecological constraints. Palaeontol. Electron. 14(3), 20A (2011).
Bell, P. R., Snively, E. & Shychoski, L. A comparison of the jaw mechanics in hadrosaurid and ceratopsid dinosaurs using finite element analysis. Anat. Rec. 292(9), 1338–1351. https://doi.org/10.1002/ar.20978 (2009).
Google Scholar
Chin, K. & Gill, B. D. Dinosaurs, dung beetles, and conifers: Participants in a Cretaceous food web. Palaios 11, 280–285. https://doi.org/10.2307/3515235 (1996).
Google Scholar
Brown, C. M. et al. Dietary palaeoecology of an early Cretaceous armoured dinosaur (Ornithischia; Nodosauridae) based on floral analysis of stomach contents. Roy. Soc. Open Sci. 7(6), 200305. https://doi.org/10.1098/rsos.200305 (2020).
Google Scholar
Crane, P. C., Friis, E. M. & Pedersen, K. R. The origin and early diversification of angiosperms. Nature 374, 27–33 (1995).
Google Scholar
Friis, E. M., Crane, P. R. & Pedersen, K. R. Early Flowers and Angiosperm Evolution 1–596 (Cambridge University Press, 2011). https://doi.org/10.1017/CBO9780511980206.
Google Scholar
Benson, R. B., Hunt, G., Carrano, M. T. & Campione, N. Cope’s rule and the adaptive landscape of dinosaur body size evolution. Palaeontology 61, 13–48. https://doi.org/10.1111/pala.12329 (2018).
Google Scholar
Hummel, J. et al. In vitro digestibility of fern and gymnosperm foliage: Implications for sauropod feeing ecology and diet selection. Proc. Royal Soc. B 275, 1015–1021. https://doi.org/10.1098/rspb.2007.1728 (2008).
Google Scholar
Gee, C. T. Dietary options for the sauropod dinosaurs from an integrated botanical and paleobotanical perspective. In Biology of the Sauropod Dinosaurs: Understanding the Life of Giants (eds Klein, K. et al.) 34–56 (Indiana University Press, 2011).
Peters, R. H. The Ecological Implications of Body Size 1–329 (Cambridge University Press, 1983).
Google Scholar
Jarman, P. J. The social organisation of antelope in relation to their ecology. Behaviour 48, 215–267 (1974).
Google Scholar
Source: Ecology - nature.com