in

Climate, currents and species traits contribute to early stages of marine species redistribution

  • Pecl, G. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

    Article 

    Google Scholar 

  • Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    Article 

    Google Scholar 

  • Sanford, E., Sones, J. L., García-Reyes, M., Goddard, J. H. & Largier, J. L. Widespread shifts in the coastal biota of northern California during the 2014–2016 marine heatwaves. Sci. Rep. 9, 4216 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Molinos, J. G., Burrows, M. & Poloczanska, E. Ocean currents modify the coupling between climate change and biogeographical shifts. Sci. Rep. 7, 1–9 (2017).

    Google Scholar 

  • Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean‐warming hotspot. Ecol. Lett. 18, 944–953 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Figueira, W. F., Curley, B. & Booth, D. J. Can temperature-dependent predation rates regulate range expansion potential of tropical vagrant fishes? Mar. Biol. 166, 73 (2019).

    Article 

    Google Scholar 

  • Champion, C. & Coleman, M. A. Seascape topography slows predicted range shifts in fish under climate change. Limnol. Oceanogr. Lett. 6, 143–153 (2021).

    Article 

    Google Scholar 

  • Roberts, S. M., Boustany, A. M. & Halpin, P. N. Substrate-dependent fish have shifted less in distribution under climate change. Commun. Biol. 3, 1–7 (2020).

    Article 

    Google Scholar 

  • Engelhard, G. H., Righton, D. A. & Pinnegar, J. K. Climate change and fishing: a century of shifting distribution in North Sea cod. Glob. Change Biol. 20, 2473–2483 (2014).

    Article 

    Google Scholar 

  • Twiname, S. et al. A cross‐scale framework to support a mechanistic understanding and modelling of marine climate‐driven species redistribution, from individuals to communities. Ecography 43, 1764–1778 (2020).

    Article 

    Google Scholar 

  • Bates, A. E. et al. Defining and observing stages of climate-mediated range shifts in marine systems. Glob. Environ. Change 26, 27–38 (2014).

    Article 

    Google Scholar 

  • Fogarty, H. E., Burrows, M. T., Pecl, G. T., Robinson, L. M. & Poloczanska, E. S. Are fish outside their usual ranges early indicators of climate‐driven range shifts? Glob. Change Biol. 23, 2047–2057 (2017).

    Article 

    Google Scholar 

  • Jiguet, F. & Barbet‐Massin, M. Climate change and rates of vagrancy of Siberian bird species to Europe. Ibis 155, 194–198 (2013).

    Article 

    Google Scholar 

  • Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Peck, M. A. et al. Projecting changes in the distribution and productivity of living marine resources: a critical review of the suite of modeling approaches used in the large European project VECTORS. Estuar., Coast. Shelf Sci. 201, 40–55 (2016).

    Article 

    Google Scholar 

  • Brito-Morales, I. et al. Climate velocity can inform conservation in a warming world. Trends Ecol. Evol. 33, 441–457 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Champion, C., Hobday, A. J., Zhang, X., Pecl, G. T. & Tracey, S. R. Changing windows of opportunity: past and future climate-driven shifts in temporal persistence of kingfish (Seriola lalandi) oceanographic habitat within south-eastern Australian bioregions. Mar. Freshw. Res. 70, 33–42 (2019).

    Article 

    Google Scholar 

  • Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: scaling from organisms to communities. Annu. Rev. Mar. Sci. 12, 153–179 (2020).

    Article 

    Google Scholar 

  • Lonhart, S. I., Jeppesen, R., Beas-Luna, R., Crooks, J. A. & Lorda, J. Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Mar. Biodivers. Rec. 12, 1–15 (2019).

    Article 

    Google Scholar 

  • Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).

    Article 

    Google Scholar 

  • Lenanton, R., Dowling, C., Smith, K., Fairclough, D. & Jackson, G. Potential influence of a marine heatwave on range extensions of tropical fishes in the eastern Indian Ocean—Invaluable contributions from amateur observers. Regional Stud. Mar. Sci. 13, 19–31 (2017).

    Article 

    Google Scholar 

  • Leriorato, J. C. & Nakamura, Y. Unpredictable extreme cold events: a threat to range-shifting tropical reef fishes in temperate waters. Mar. Biol. 166, 1–10 (2019).

    Article 

    Google Scholar 

  • Hobday, A. J. & Pecl, G. T. Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Rev. Fish. Biol. Fish. 24, 415–425 (2014).

    Article 

    Google Scholar 

  • Pecl, G. T. et al. Redmap Australia: challenges and successes with a large-scale citizen science-based approach to ecological monitoring and community engagement on climate change. Front. Mar. Sci. 6, 349 (2019).

    Article 

    Google Scholar 

  • Jacox, M. G., Alexander, M. A., Bograd, S. J. & Scott, J. D. Thermal displacement by marine heatwaves. Nature 584, 82–86 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Brown, C. J. et al. Ecological and methodological drivers of species’ distribution and phenology responses to climate change. Glob. Change Biol. 22, 1548–1560 (2016).

    Article 

    Google Scholar 

  • Fuchs, H. L. et al. Wrong-way migrations of benthic species driven by ocean warming and larval transport. Nat. Clim. Change 10, 1052–1056 (2020).

    Article 

    Google Scholar 

  • Rooney, N., McCann, K. S. & Moore, J. C. A landscape theory for food web architecture. Ecol. Lett. 11, 867–881 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Feary, D. A. et al. Latitudinal shifts in coral reef fishes: why some species do and others do not shift. Fish. Fish. 15, 593–615 (2014).

    Article 

    Google Scholar 

  • Beissinger, S. R. & Riddell, E. A. Why are species’ traits weak predictors of range shifts? Ann. Rev. Ecol. Evol. Syst. 52, 47–66 (2021).

  • Pearce, A. F. & Feng, M. The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J. Mar. Syst. 111, 139–156 (2013).

    Article 

    Google Scholar 

  • Oliver, E. C. et al. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 8, 16101 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gervais, C. R., Champion, C. & Pecl, G. T. Species on the move around the Australian coastline: a continental scale review of climate‐driven species redistribution in marine systems. Glob. Change Biol. 27, 3200–3217 (2021).

    Article 

    Google Scholar 

  • Nursey-Bray, M., Palmer, R. & Pecl, G. Spot, log, map: assessing a marine virtual citizen science program against Reed’s best practice for stakeholder participation in environmental management. Ocean Coast. Manag. 151, 1–9 (2018).

    Article 

    Google Scholar 

  • Pecl, G. T. et al. Ocean warming hotspots provide early warning laboratories for climate change impacts. Rev. Fish. Biol. Fish. 24, 409–413 (2014).

    Article 

    Google Scholar 

  • Stuart-Smith, J. et al. Southernmost records of two Seriola species in an Australian ocean-warming hotspot. Mar. Biodivers. 48, 1579–1582 (2018).

    Article 

    Google Scholar 

  • Provoost, P. & Bosch, S. robis: R Client to access data from the OBIS API. Ocean Biogeographic Information System. Intergovernmental Oceanographic Commission of UNESCO. R package version 2.1.8, https://cran.r-project.org/package=robis (2019).

  • Froese, R. & Pauly, D. (eds). FishBase. World Wide Web electronic publication. www.fishbase.org. (2022). Accessed 14 July 2019.

  • ABRS. Australian Faunal Directory. Australian Biological Resources Study, Canberra. https://biodiversity.org.au/afd/home. (2020). Accessed 15 July 2019.

  • Robinson, L. M. et al. Rapid assessment of an ocean warming hotspot reveals “high” confidence in potential species’ range extensions. Glob. Environ. Change 31, 28–37 (2015).

    Article 

    Google Scholar 

  • Hijmans, R. J. raster: geographic data analysis and modeling. R package version 3.4-5. https://CRAN.R-project.org/package=raster (2020).

  • van Etten, J. R package gdistance: distances and routes on geographical grids. J. Stat. Softw. 76, 1–21 (2017).

    Google Scholar 

  • Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    Article 

    Google Scholar 

  • Molinos, J. G., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: an r package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evol. 10, 2195–2202 (2019).

    Article 

    Google Scholar 

  • Schlegel, R. W. & Smit, A. J. heatwaveR: a central algorithm for the detection of heatwaves and cold-spells. J. Open Source Softw. 3, 821 (2018).

    Article 

    Google Scholar 

  • Venables, W. N. & Ripley, B. D. Modern applied statistics with S. 4th edn, (Springer, 2002).

  • Lüdecke, D. sjPlot: data visualization for statistics in social science. R package version 2.8.6. https://CRAN.R-project.org/package=sjPlot (2020).


  • Source: Ecology - nature.com

    A healthy wind

    Vegetation assessments under the influence of environmental variables from the Yakhtangay Hill of the Hindu-Himalayan range, North Western Pakistan