in

A trait-based conceptual framework to examine urban biodiversity, socio-ecological filters, and ecosystem services linkages

  • United Nations. World Urbanization Prospects: The 2018 revision. (Department of Economic and Social Affairs, Population Division, United Nations, 2018).

  • Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).

    Article 

    Google Scholar 

  • McPhearson, T. et al. Advancing urban ecology toward a science of cities. Bioscience 66, 198–212 (2016).

    Article 

    Google Scholar 

  • Dodman, D. et al. Cities, settlements and key infrastructure. In Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Pörtner, H.-O. et al.) 997–1040 (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2022).

  • Díaz, S. et al. Assessing nature’s contributions to people: Recognizing culture, and diverse sources of knowledge, can improve assessments. Science 359, 270–272 (2018).

    Article 

    Google Scholar 

  • Grabowski, Z. J., McPhearson, T., Matsler, A. M., Groffman, P. & Pickett, S. T. A. What is green infrastructure? A study of definitions in US city planning. Front. Ecol. Environ. 20, 152–160 (2022).

    Article 

    Google Scholar 

  • Childers, D. L. et al. Urban ecological infrastructure: An inclusive concept for the non-built urban environment. Elementa 7, 1–14 (2019).

    Google Scholar 

  • Gómez-Baggethun, E. et al. Urban ecosystem services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities (eds. Elmqvist, T. et al.) 175–251 (Springer, Netherlands, 2013).

  • Díaz, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).

    Article 

    Google Scholar 

  • Burkhard, B. & Maes, J. Mapping Ecosystem Services (Pensoft Publishers, Sofia, 2017).

  • Eviner, V. T. & Chapin, F. S. Functional Matrix: A conceptual framework for predicting multiple plant effects on ecosystem processes. Annu. Rev. Ecol. Evol. Syst. 34, 455–485 (2003).

    Article 

    Google Scholar 

  • Lavorel, S., McIntyre, S., Landsberg, J. & Forbes, T. D. A. Plant functional classifications: From general groups to specific groups based on response to disturbance. Trends Ecol. Evol. 12, 474–478 (1997).

    Article 

    Google Scholar 

  • Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).

    Article 

    Google Scholar 

  • Suding, K. N. et al. Scaling environmental change through the community-level: A trait-based response-and-effect framework for plants. Glob. Chang. Biol. 14, 1125–1140 (2008).

    Article 

    Google Scholar 

  • Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).

    Article 

    Google Scholar 

  • Hevia, V. et al. Trait-based approaches to analyze links between the drivers of change and ecosystem services: Synthesizing existing evidence and future challenges. Ecol. Evol. 7, 831–844 (2017).

    Article 

    Google Scholar 

  • Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).

    Article 

    Google Scholar 

  • Lavorel, S. Plant functional effects on ecosystem services. J. Ecol. 101, 4–8 (2013).

    Article 

    Google Scholar 

  • Andersson, E. et al. What are the traits of a social-ecological system: Towards a framework in support of urban sustainability. npj Urban Sustain. 1, 14 (2021).

    Article 

    Google Scholar 

  • Pickett, S. T. A. et al. Urban ecological systems: Linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu. Rev. Ecol. Syst. 32, 127–157 (2001).

    Article 

    Google Scholar 

  • McPhearson, T., Haase, D., Kabisch, N. & Gren, Å. Advancing understanding of the complex nature of urban systems. Ecol. Indic. 70, 566–573 (2016).

    Article 

    Google Scholar 

  • Zhou, W., Pickett, S. T. A. & McPhearson, T. Conceptual frameworks facilitate integration for transdisciplinary urban science. npj Urban Sustain. 1, 1 (2021).

    Article 

    Google Scholar 

  • Andersson, E. et al. Scale and context dependence of ecosystem service providing units. Ecosyst. Serv. 12, 157–164 (2015).

    Article 

    Google Scholar 

  • Pinho, P. et al. Research agenda on biodiversity and ecosystem functions and services in European cities. Basic Appl. Ecol. 53, 124–133 (2021).

    Article 

    Google Scholar 

  • Bullock, J. M. et al. Human-mediated dispersal and the rewiring of spatial networks. Trends Ecol. Evol. 33, 958–970 (2018).

    Article 

    Google Scholar 

  • Avolio, M. L., Swan, C., Pataki, D. E. & Jenerette, G. D. Incorporating human behaviors into theories of urban community assembly and species coexistence. Oikos 130, 1849–1864 (2021).

    Article 

    Google Scholar 

  • Aronson, M. F. J. et al. Hierarchical filters determine community assembly of urban species pools. Ecology 97, 2952–2963 (2016).

    Article 

    Google Scholar 

  • Woodward, F. I. & Diament, A. D. Functional approaches to predicting the ecological effects of global change. Funct. Ecol. 5, 212 (1991).

    Article 

    Google Scholar 

  • Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9, 113–122 (1998).

    Article 

    Google Scholar 

  • Boet, O., Arnan, X. & Retana, J. The role of environmental vs. biotic filtering in the structure of European ant communities: A matter of trait type and spatial scale. PLoS ONE 15, e0228625 (2020).

    Article 

    Google Scholar 

  • Grimm, N. B., Grove, J. M., Pickett, S. T. A. & Redman, C. L. Integrated approaches to long-term studies of urban ecological systems. Bioscience 50, 571–584 (2000).

    Article 

    Google Scholar 

  • Vandewalle, M. et al. Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers. Conserv. 19, 2921–2947 (2010).

    Article 

    Google Scholar 

  • Williams, N. S. G. et al. A conceptual framework for predicting the effects of urban environments on floras. J. Ecol. 97, 4–9 (2009).

    Article 

    Google Scholar 

  • Cavender-Bares, J. et al. Horticultural availability and homeowner preferences drive plant diversity and composition in urban yards. Ecol. Appl. 30, 1–16 (2020).

    Article 

    Google Scholar 

  • Pearse, W. D. et al. Homogenization of plant diversity, composition, and structure in North American urban yards. Ecosphere 9, e02105 (2018).

    Article 

    Google Scholar 

  • Cubino, J. P. et al. Drivers of plant species richness and phylogenetic composition in urban yards at the continental scale. Landsc. Ecol. 34, 63–77 (2019).

    Article 

    Google Scholar 

  • Oke, T. R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108, 1–24 (1982).

    Google Scholar 

  • Sukopp, H. Human-caused impact on preserved vegetation. Landsc. Urban Plan. 68, 347–355 (2004).

    Article 

    Google Scholar 

  • Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. USA 104, 20684–20689 (2007).

    Article 

    Google Scholar 

  • Williams, N. S. G., Hahs, A. K. & Vesk, P. A. Urbanisation, plant traits and the composition of urban floras. Perspect. Plant Ecol. Evol. Syst. 17, 78–86 (2015).

    Article 

    Google Scholar 

  • Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 38, 1699–1712 (2015).

    Article 

    Google Scholar 

  • Jochner, S. & Menzel, A. Urban phenological studies—past, present, future. Environ. Pollut. 203, 250–261 (2015).

    Article 

    Google Scholar 

  • Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365 (2007).

    Article 

    Google Scholar 

  • de Bello, F. et al. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers. Conserv. 19, 2873–2893 (2010).

    Article 

    Google Scholar 

  • Santangelo, J. S. et al. Global urban environmental change drives adaptation in white clover. Science 375, 1275–1281 (2022).

    Article 

    Google Scholar 

  • Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499–504 (2013).

    Article 

    Google Scholar 

  • Martin, C. A., Warren, P. S. & Kinzig, A. P. Neighborhood socioeconomic status is a useful predictor of perennial landscape vegetation in residential neighborhoods and embedded small parks of Phoenix, AZ. Landsc. Urban Plan. 69, 355–368 (2004).

    Article 

    Google Scholar 

  • Kinzig, A. P., Warren, P., Martin, C., Hope, D. & Katti, M. The effects of human socioeconomic status and cultural characteristics on urban patterns of biodiversity. Ecol. Soc. 10, 23 (2005).

    Article 

    Google Scholar 

  • Stephenson, J. The cultural values model: An integrated approach to values in landscapes. Landsc. Urban Plan. 84, 127–139 (2008).

    Article 

    Google Scholar 

  • Andersson, E., Barthel, S. & Ahrné, K. Measuring social–ecological dynamics behind the generation of ecosystem services. Ecol. Appl. 17, 1267–1278 (2007).

    Article 

    Google Scholar 

  • Fraser, E. D. G. & Kenney, W. A. Cultural background and landscape history as factors affecting perceptions of the urban forest. J. Arboric. 26, 106–113 (2000).

    Google Scholar 

  • Hope, D. et al. Socioeconomics drive urban plant diversity. Proc. Natl. Acad. Sci. USA 100, 8788–8792 (2003).

    Article 

    Google Scholar 

  • Avolio, M. L. et al. Understanding preferences for tree attributes: The relative effects of socio-economic and local environmental factors. Urban Ecosyst. 18, 73–86 (2015).

    Article 

    Google Scholar 

  • Körmöndi, B., Tempfli, J., Kocsis, J. B., Adams, J. & Szkordilisz, F. E. The secret ingredient—The role of governance in green infrastructure development: Through the examples of European cities. IOP Conf. Ser. Earth Environ. Sci. 323, (2019).

  • Conway, T. M. & Vander Vecht, J. Growing a diverse urban forest: species selection decisions by practitioners planting and supplying trees. Landsc. Urban Plan. 138, 1–10 (2015).

    Article 

    Google Scholar 

  • Lack, W. H. The Book of Palms (Taschen-Bibliotheca Universalis, 2015).

  • Grilo, F. et al. Using green to cool the grey: Modelling the cooling effect of green spaces with a high spatial resolution. Sci. Total Environ. 724, 138182 (2020).

    Article 

    Google Scholar 

  • Prasifka, J. R. et al. Using nectar-related traits to enhance crop–pollinator interactions. Front. Plant Sci. 9, 1–8 (2018).

    Article 

    Google Scholar 

  • Veerkamp, C. J. et al. A review of studies assessing ecosystem services provided by urban green and blue infrastructure. Ecosyst. Serv. 52, 101367 (2021).

    Article 

    Google Scholar 

  • Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 576 (2020).

    Article 

    Google Scholar 

  • Farmer, J. Trees in Paradise: A California History (WW Norton & Company, 2013).

  • Goodness, J., Andersson, E., Anderson, P. M. L. & Elmqvist, T. Exploring the links between functional traits and cultural ecosystem services to enhance urban ecosystem management. Ecol. Indic. 70, 597–605 (2016).

    Article 

    Google Scholar 

  • Masterson, V. A. et al. The contribution of sense of place to social-ecological systems research: A review and research agenda. Ecol. Soc. 22, 49 (2017).

    Article 

    Google Scholar 

  • Masterson, V. A., Enqvist, J. P., Stedman, R. C. & Tengö, M. Sense of place in social-ecological systems: From theory to empirics. Sustain. Sci. 14, 555–564 (2019).

    Article 

    Google Scholar 

  • Mukherjee, A. & Agrawal, M. Use of GLM approach to assess the responses of tropical trees to urban air pollution in relation to leaf functional traits and tree characteristics. Ecotoxicol. Environ. Saf. 152, 42–54 (2018).

    Article 

    Google Scholar 

  • Singh, S. K., Rao, D. N., Agrawal, M., Pandey, J. & Naryan, D. Air pollution tolerance index of plants. J. Environ. Manage. 32, 45–55 (1991).

    Article 

    Google Scholar 

  • Mukherjee, A. & Agrawal, M. Pollution response score of tree species in relation to ambient air quality in an urban area. Bull. Environ. Contam. Toxicol. 96, 197–202 (2016).

    Article 

    Google Scholar 

  • Barwise, Y. & Kumar, P. Designing vegetation barriers for urban air pollution abatement: A practical review for appropriate plant species selection. npj Clim. Atmos. Sci. 3, 12 (2020).

    Article 

    Google Scholar 

  • Grote, R. et al. Functional traits of urban trees: Air pollution mitigation potential. Front. Ecol. Environ. 14, 543–550 (2016).

    Article 

    Google Scholar 

  • Tomson, M. et al. Green infrastructure for air quality improvement in street canyons. Environ. Int. 146, 106288 (2021).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A healthy wind

    Vegetation assessments under the influence of environmental variables from the Yakhtangay Hill of the Hindu-Himalayan range, North Western Pakistan