in

Fungivorous mites enhance the survivorship and development of stingless bees even when exposed to pesticides

  • Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).

    Article 
    PubMed 

    Google Scholar 

  • – Potts, S. G., et al. Summary for Policymakers of the Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination, and food production (eds. Potts, S. G. et al.). 36 pages. (Bonn, Germany, 2016).

  • Dolezal, A. G. et al. Interacting stressors matter: Diet quality and virus infection in honeybee health. R. Soc. Open Sci. 6, 181803 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Annoscia, D. et al. Neonicotinoid Clothianidin reduces honeybee immune response and contributes to Varroa mite proliferation. Nat. Commun. 11, 1–7 (2020).

    Article 

    Google Scholar 

  • Macías-Macías, J. O. et al. Nosema ceranae causes cellular immunosuppression and interacts with thiamethoxam to increase mortality in the stingless bee Melipona colimana. Sci. Rep. 10, 1–8 (2020).

    Article 

    Google Scholar 

  • Michener, C. D. Pot-honey. In Pot-Honey: A Legacy of Stingless Bees (eds Vit, P. et al.) 3–17 (Springer, 2013).

    Chapter 

    Google Scholar 

  • Rosa, C. A. et al. Yeast communities associated with stingless bees. FEMS Yeast Res. 4, 271–275 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Menezes, C., Vollet-Neto, A. & Fonseca, V. L. I. An advance in the in vitro rearing of stingless bee queens. Apidologie 44, 491–500 (2013).

    Article 

    Google Scholar 

  • Morais, P. B., Calaça, P. S. S. T. & Rosa, C. A. Microorganisms associated with stingless bees. In Pot-Honey Bees (eds Vit, P. et al.) 173–186 (Springer, 2013).

    Chapter 

    Google Scholar 

  • Menegatti, C. et al. Paenibacillus polymyxa associated with the stingless bee Melipona scutellaris produces antimicrobial compounds against entomopathogens. J. Chem. Ecol. 44, 1158–1169 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Paludo, C. R. et al. Stingless bee larvae require fungal steroid to pupate. Sci. Rep. 8, 1122321 (2018).

    Article 

    Google Scholar 

  • Paludo, C. R. et al. Microbial community modulates growth of symbiotic fungus required for stingless bee metamorphosis. PLoS ONE 14, e0219696 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hamzah, S. A., Zawawi, N. & Sabri, S. A review on the association of bacteria with stingless bees. Sains Malays. 49, 1853–1863 (2020).

    Article 

    Google Scholar 

  • de Paula, G. T., Menezes, C., Pupo, M. T. & Rosa, C. A. Stingless bees and microbial interactions. Curr. Opin. Insect Sci. 44, 41–47 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Menezes, C. et al. A Brazilian social bee must cultivate fungus to survive. Curr. Biol. 25, 2851–2855 (2015).

    Article 
    PubMed 

    Google Scholar 

  • – Flechtmann, C. H. W. & de Camargo, C. A. Acari associated with stingless bees (Meliponidae, Hymenoptera) from Brazil. in Proceedings of the 4th International Congress of Acarology, Saalfelden (Austria)/edited by Edward Piffl (Budapest, Akademiai Kiado,1979).

  • Dorigo, A. S. et al. In vitro larval rearing protocol for the stingless bee species Melipona scutellaris for toxicological studies. PLoS ONE 14, e0213109 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosa-Fontana, A., Dorigo, A. S., Galaschi-Teixeira, J. S., Nocelli, R. C. F. & Malaspina, O. What is the most suitable native bee species from the neotropical region to be proposed as model-organism for toxicity tests during the larval phase?. Environ. Pollut. 265, 114849 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Miotelo, L., Dos Reis, A. L. M., Malaquias, J. B., Malaspina, O. & Roat, T. C. Apis mellifera and Melipona scutellaris exhibit differential sensitivity to thiamethoxam. Environ. Pollut. 268, 115770 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Rosa, A. E., André, H. & Flechtmann, C. H. W. Acari domun meliponirarum brasiliensium habitantes. Proctotydaeus alvearii 45(1–2), 79–83 (1985).

    Google Scholar 

  • Da-Costa, T., dos Santos, C. F., Rodighero, L. F., Ferla, N. J. & Blochtein, B. Mite diversity is determined by the stingless bee host species. Apidologie 52(5), 950–959. https://doi.org/10.1007/s13592-021-00878-2 (2021).

    Article 

    Google Scholar 

  • de Rosa, A. S. et al. Consumption of the neonicotinoid thiamethoxam during the larval stage affects the survival and development of the stingless bee Scaptotrigona aff. depilis. Apidologie 47, 729–738 (2016).

    Article 

    Google Scholar 

  • Wu, J. Y., Anelli, C. M. & Sheppard, W. S. Sub-lethal effects of pesticide residues in brood comb on worker honeybee (Apis mellifera) development and longevity. PLoS One 6, e14720 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tavares, D. A., Roat, T. C., Carvalho, S. M., Silva-Zacarin, E. C. M. & Malaspina, O. In vitro effects of thiamethoxam on larvae of Africanized honeybee Apis mellifera (Hymenoptera: Apidae). Chemosphere 135, 370–378 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Biani, N. B., Mueller, U. G. & Wcislo, W. T. Cleaner mites: sanitary mutualism in the miniature ecosystem of neotropical bee nests. Am. Nat. 173, 841–847 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Gilliam, M., Roubik, D. W. & Lorenz, B. J. Microorganisms associated with pollen, honey, and brood provisions in the nest of a stingless bee Melipona fasciata. Apidologie 21, 89–97 (1990).

    Article 

    Google Scholar 

  • Rebelo, K. S., Ferreira, A. G. & Carvalho-Zilse, G. A. Physicochemical characteristics of pollen collected by Amazonian stingless bees. Ciência Rural 46, 927–932 (2016).

    Article 

    Google Scholar 

  • Mohammad, S. M., Mahmud-Ab-Rashid, N.-K. & Zawawi, N. Stingless bee-collected pollen (bee bread): Chemical and microbiology properties and health benefits. Molecules 26, 957 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • da Cruz Landim, C. (2009). Abelhas. Unesp.

  • Rosa, A. S. et al. Quantification of larval food and its pollen content in the diet of stingless bees: Subsidies for toxicity bioassays studies. Braz. J. Biol. 75(3), 771–772. https://doi.org/10.1590/1519-6984.22314 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Vollet-Neto, A., Maia-Silva, C., Menezes, C. & Imperatriz-Fonseca, V. L. Newly emerged workers of the stingless bee Scaptotrigona aff. depilis prefer stored pollen to fresh pollen. Apidologie 48, 204–210 (2017).

    Article 

    Google Scholar 

  • Hartfelder, K. & Engels, W. The composition of larval food in stingless bees: evaluating nutritional balance by chemosystematic methods. Insect. Soc. 36, 1–14 (1989).

    Article 

    Google Scholar 

  • Costa, R. A. C. & da Cruz-Landim, C. Distribution of acid phosphatases in the hypopharyngeal glands from workers, queens, and males of a Brazilian stingless bee Scaptotrigona postica Latreille: An ultrastructural cytochemical study. Histochem. J. 33, 653–662 (2001).

    Article 
    PubMed 

    Google Scholar 

  • de Moraes, R. L. M. S., Brochetto-Braga, M. R. & Azevedo, A. Electrophoretical studies of proteins of the hypopharyngeal glands and of the larval food of Melipona quadrifasciata anthidioides Lep. (Hymenoptera, Meliponinae). Insect. Soc. 43, 183–188 (1996).

    Article 

    Google Scholar 

  • Fernandes-da-Silva, P. G., Muccillo, G. & Zucoloto, F. S. Determination of minimum quantity of pollen and nutritive value of different carbohydrates for Scaptotrigona depilis Moure (Hymenoptera, Apidae). Apidologie 24, 73–79 (1993).

    Article 

    Google Scholar 

  • Fernandes-da-Silva, P. G. & Serrão, J. E. Nutritive value and apparent digestibility of bee-collected and bee-stored pollen in the stingless bee, Scaptotrigona postica Latr. (Hymenoptera, Apidae, Meliponini). Apidologie 31, 39–45 (2000).

    Article 

    Google Scholar 

  • Crailsheim, K. & Stolberg, E. Influence of diet, age and colony condition upon intestinal proteolytic activity and size of the hypopharyngeal glands in the honeybee (Apis mellifera L.). J. Insect Physiol. 35, 595–602 (1989).

    Article 

    Google Scholar 

  • Oliveira, R. A., Roat, T. C., Carvalho, S. M. & Malaspina, O. Side-effects of thiamethoxam on the brain and midgut of the africanized honeybee Apis mellifera (Hymenopptera: Apidae). Environ. Toxicol. 29, 1122–1133 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Christen, V., Schirrmann, M., Frey, J. E. & Fent, K. Global transcriptomic effects of environmentally relevant concentrations of the neonicotinoids clothianidin, imidacloprid, and thiamethoxam in the brain of honeybees (Apis mellifera). Environ. Sci. Technol. 52, 7534–7544 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Moreira, D. R. et al. Toxicity and effects of the neonicotinoid thiamethoxam on Scaptotrigona bipunctata Lepeletier, 1836 (Hymenoptera: Apidae). Environ. Toxicol. 33, 463–475 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Tavares, D. A., Roat, T. C., Silva-Zacarin, E. C. M., Nocelli, R. C. F. & Malaspina, O. Exposure to thiamethoxam during the larval phase affects synapsin levels in the brain of the honeybee. Ecotoxicol. Environ. Saf. 169, 523–528 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Roat, T. C. et al. Using a toxicoproteomic approach to investigate the effects of thiamethoxam into the brain of Apis mellifera. Chemosphere 258, 127362 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Caesar, L. et al. The virome of an endangered stingless bee suffering from annual mortality in southern Brazil. J. Gen. Virol. 100, 1153–1164 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Guimarães-Cestaro, L. et al. Occurrence of virus, microsporidia, and pesticide residues in three species of stingless bees (Apidae: Meliponini) in the field. Sci. Nat. 107, 1–14 (2020).

    Article 

    Google Scholar 

  • Teixeira, É. W. et al. European Foulbrood in stingless bees (Apidae: Meliponini) in Brazil: Old disease, renewed threat. J. Invertebr. Pathol. 172, 107357 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Alberoni, D., Gaggìa, F., Baffoni, L. & Di Gioia, D. Beneficial microorganisms for honeybees: problems and progresses. Appl. Microbiol. Biotechnol. 100, 9469–9482 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Manley, R., Boots, M. & Wilfert, L. Emerging viral disease risk to pollinating insects: ecological, evolutionary, and anthropogenic factors. J. Appl. Ecol. 52, 331–340 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Manley, R. et al. Knock- on community impacts of a novel vector: spillover of emerging DWV- B from Varroa- infested honeybees to wild bumblebees. Ecol. Lett. 22, 1306–1315 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Graystock, P., Blane, E. J., McFrederick, Q. S., Goulson, D. & Hughes, W. O. H. Do managed bees drive parasite spread and emergence in wild bees?. Int. J. Parasitol. Parasit. Wildl. 5, 64–75 (2016).

    Article 

    Google Scholar 

  • Requier, F. et al. The conservation of native honeybees is crucial. Trends Ecol. Evol. 34, 789–798 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Test No. 237: Honey Bee (Apis Mellifera) Larval Toxicity Test, Single Exposure. (2013). OECD. https://doi.org/10.1787/9789264203723-en

  • Moral, R. A., Hinde, J. & Demétrio, C. G. Half-normal plots and overdispersed models in R: the hnp package. J. Stat. Softw. 81(1), 1–23 (2017).

    Google Scholar 

  • – Kassambara, A. Survminer. GitHub repository. https://github.com/kassambara/survminer (2020).

  • – Therneau, T., Crowson, C., & Atkinson, E. Multi-state models and competing risks. CRAN-R https://cran.r-project.org/web/packages/survival/vignettes/compete (2020).


  • Source: Ecology - nature.com

    Comparison of the effects of litter decomposition process on soil erosion under simulated rainfall

    World leaders must step up to put biodiversity deal on path to success