Koskella, B. The phyllosphere. Curr. Biol. 30, R1143–R1146 (2020).
Google Scholar
Lu, N. et al. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Plant Methods 15, 17 (2019).
Google Scholar
Arye, G. C. & Harel, A. in Microbial Genomics in Sustainable Agroecosystems (eds Tripathi, V. et al.) 39–65 (Springer, 2020).
Universal plant healthcare. Nat. Plants 6, 47 (2020).
Fones, H. N. et al. Threats to global food security from emerging fungal and oomycete crop pathogens. Nat. Food 1, 332–342 (2020).
Google Scholar
Li, W., Deng, Y., Ning, Y., He, Z. & Wang, G. L. Exploiting broad-spectrum disease resistance in crops: from molecular dissection to breeding. Annu. Rev. Plant Biol. 71, 575–603 (2020).
Google Scholar
Matsumoto, H. et al. Bacterial seed endophyte shapes disease resistance in rice. Nat. Plants 7, 60–72 (2021).
Google Scholar
Thomazella, D. P. T. et al. Loss of function of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. Proc. Natl Acad. Sci. USA 118, e2026152118 (2021).
Google Scholar
Guo, Y. Molecular design for rice breeding. Nat. Food 2, 849–849 (2021).
Google Scholar
Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).
Google Scholar
Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).
Google Scholar
Carrion, V. J. et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366, 606–612 (2019).
Google Scholar
Chialva, M., Lanfranco, L. & Bonfante, P. The plant microbiota: composition, functions, and engineering. Curr. Opin. Biotechnol. 73, 135–142 (2021).
Google Scholar
Liu, H., Brettell, L. E. & Singh, B. Linking the phyllosphere microbiome to plant health. Trends Plant Sci. 25, 841–844 (2020).
Google Scholar
Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).
Google Scholar
Liu, H., Brettell, L. E., Qiu, Z. & Singh, B. K. Microbiome-mediated stress resistance in plants. Trends Plant Sci. 25, 733–743 (2020).
Google Scholar
Xu, P. et al. Temporal metabolite responsiveness of microbiota in the tea plant phyllosphere promotes continuous suppression of fungal pathogens. J. Adv. Res. 39, 49–60 (2021).
Google Scholar
Wang, M. & Cernava, T. Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity. Environ. Sci. Ecotechnol. 4, 100061 (2020).
Google Scholar
Hegazi, N., Hartmann, A. & Ruppel, S. The plant microbiome: exploration of plant–microbe interactions for improving agricultural productivity. J. Adv. Res. 19, 1–2 (2019).
Google Scholar
Mittelviefhaus, M., Muller, D. B., Zambelli, T. & Vorholt, J. A. A modular atomic force microscopy approach reveals a large range of hydrophobic adhesion forces among bacterial members of the leaf microbiota. ISME J. 13, 1878–1882 (2019).
Google Scholar
Sapkota, R., Knorr, K., Jorgensen, L. N., O’Hanlon, K. A. & Nicolaisen, M. Host genotype is an important determinant of the cereal phyllosphere mycobiome. New Phytol. 207, 1134–1144 (2015).
Google Scholar
Bodenhausen, N., Bortfeld-Miller, M., Ackermann, M. & Vorholt, J. A. A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet. 10, e1004283 (2014).
Google Scholar
Horton, M. W. et al. Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat. Commun. 5, 5320 (2014).
Google Scholar
Wagner, M. R. et al. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 7, 12151 (2016).
Google Scholar
Shakir, S., Zaidi, S. S., de Vries, F. T. & Mansoor, S. Plant genetic networks shaping phyllosphere microbial community. Trends Genet. 37, 306–316 (2021).
Google Scholar
Xiong, C. et al. Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome 9, 171 (2021).
Google Scholar
Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S. W. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546, 145–147 (2017).
Google Scholar
Chen, T. et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580, 653–657 (2020).
Google Scholar
Pang, Z. et al. Linking plant secondary metabolites and plant microbiomes: a review. Front. Plant Sci. 12, 621276 (2021).
Google Scholar
Pfeilmeier, S. et al. The plant NADPH oxidase RBOHD is required for microbiota homeostasis in leaves. Nat. Microbiol. 6, 852–864 (2021).
Google Scholar
Gupta, R. et al. Cytokinin drives assembly of the phyllosphere microbiome and promotes disease resistance through structural and chemical cues. ISME J. 16, 122–137 (2022).
Google Scholar
Massoni, J. et al. Consistent host and organ occupancy of phyllosphere bacteria in a community of wild herbaceous plant species. ISME J. 14, 245–258 (2020).
Google Scholar
Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, e1002352 (2016).
Google Scholar
Ren, G. et al. Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy. Plant Soil 392, 27–44 (2015).
Google Scholar
Meyer, K.M. et al. Plant neighborhood shapes diversity and reduces interspecific variation of the phyllosphere microbiome. ISME J. 16, 1376–1387 (2022).
Google Scholar
Qiu, Y. et al. Warming and elevated ozone induce tradeoffs between fine roots and mycorrhizal fungi and stimulate organic carbon decomposition. Sci. Adv. 7, eabe9256 (2021).
Google Scholar
Yu, H., Zhang, Y. & Tan, W. The “neighbor avoidance effect” of microplastics on bacterial and fungal diversity and communities in different soil horizons. Environ. Sci. Ecotechnol. 8, 100121 (2021).
Google Scholar
Wang, Q. et al. Interactive effects of ozone exposure and nitrogen addition on the rhizosphere bacterial community of poplar saplings. Sci. Total Environ. 754, 142134 (2021).
Google Scholar
Zhang, H., Jiang, Q., Wang, J., Li, K. & Wang, F. Analysis on the impact of two winter precipitation episodes on PM2.5 in Beijing. Environ. Sci. Ecotechnol. 5, 100080 (2021).
Google Scholar
Feng, Z. et al. Ozone pollution threatens the production of major staple crops in East Asia. Nat. Food 3, 47–56 (2022).
Google Scholar
Zhu, Y. G. et al. Impacts of global change on the phyllosphere microbiome. New Phytol. 234, 1977–1986 (2021).
Google Scholar
Sawada, H. et al. Elevated ozone deteriorates grain quality of japonica rice cv. Koshihikari, even if it does not cause yield reduction. Rice 9, 7 (2016).
Google Scholar
Agathokleous, E. et al. Ozone affects plant, insect, and soil microbial communities: a threat to terrestrial ecosystems and biodiversity. Sci. Adv. 6, eabc1176 (2020).
Google Scholar
Mieczan, T. & Bartkowska, A. The effect of experimentally simulated climate warming on the microbiome of carnivorous plants—a microcosm experiment. Glob. Ecol. Conserv. 34, e02040 (2022).
Google Scholar
Liu, H. et al. Evidence for the plant recruitment of beneficial microbes to suppress soil-borne pathogens. New Phytol. 229, 2873–2885 (2021).
Google Scholar
Gao, M. et al. Disease-induced changes in plant microbiome assembly and functional adaptation. Microbiome 9, 187 (2021).
Google Scholar
Snelders, N. C. et al. Microbiome manipulation by a soil-borne fungal plant pathogen using effector proteins. Nat. Plants 6, 1365–1374 (2020).
Google Scholar
Humphrey, P. T. & Whiteman, N. K. Insect herbivory reshapes a native leaf microbiome. Nat. Ecol. Evol. 4, 221–229 (2020).
Google Scholar
Laforest-Lapointe, I., Messier, C. & Kembel, S. W. Tree leaf bacterial community structure and diversity differ along a gradient of urban intensity. mSystems 2, e00087–17 (2017).
Google Scholar
Imperato, V. et al. Characterisation of the Carpinus betulus L. phyllomicrobiome in urban and forest areas. Front. Microbiol. 10, 1110 (2019).
Google Scholar
Perreault, R. & Laforest-Lapointe, I. Plant–microbe interactions in the phyllosphere: facing challenges of the anthropocene. ISME J. 16, 339–345 (2021).
Google Scholar
Jain, A., Ranjan, S., Dasgupta, N. & Ramalingam, C. Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit. Rev. Food Sci. Nutr. 58, 297–317 (2018).
Google Scholar
Sillen, W. M. A. et al. Nanoparticle treatment of maize analyzed through the metatranscriptome: compromised nitrogen cycling, possible phytopathogen selection, and plant hormesis. Microbiome 8, 127 (2020).
Google Scholar
Berg, G. & Cernava, T. The plant microbiota signature of the Anthropocene as a challenge for microbiome research. Microbiome 10, 54 (2022).
Google Scholar
Fan, X. et al. Microenvironmental interplay predominated by beneficial Aspergillus abates fungal pathogen incidence in paddy environment. Environ. Sci. Technol. 53, 13042–13052 (2019).
Google Scholar
Chen, Y. et al. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat. Commun. 9, 3429 (2018).
Google Scholar
Wang, M., Hashimoto, M. & Hashidoko, Y. Repression of tropolone production and induction of a Burkholderia plantarii pseudo-biofilm by carot-4-en-9,10-diol, a cell-to-cell signaling disrupter produced by Trichoderma virens. PLoS ONE 8, e78024 (2013).
Google Scholar
Bauermeister, A., Mannochio-Russo, H., Costa-Lotufo, L. V., Jarmusch, A. K. & Dorrestein, P. C. Mass spectrometry-based metabolomics in microbiome investigations. Nat. Rev. Microbiol. 20, 143–160 (2022).
Google Scholar
Matsumoto, H. et al. Reprogramming of phytopathogen transcriptome by a non-bactericidal pesticide residue alleviates its virulence in rice. Fundam. Res. 2, 198–207 (2022).
Google Scholar
Hou, S. et al. A microbiota–root–shoot circuit favours Arabidopsis growth over defence under suboptimal light. Nat. Plants 7, 1078–1092 (2021).
Mathur, M., Nair, A. & Kadoo, N. Plant–pathogen interactions: microRNA-mediated trans-kingdom gene regulation in fungi and their host plants. Genomics 112, 3021–3035 (2020).
Google Scholar
Kaur, C. et al. Microbial methylglyoxal metabolism contributes towards growth promotion and stress tolerance in plants. Environ. Microbiol. 24, 2817–2836 (2021).
Google Scholar
Castrillo, G. et al. Root microbiota drive direct integration of phosphate stress and immunity. Nature 543, 513–518 (2017).
Google Scholar
Korenblum, E. et al. Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proc. Natl Acad. Sci. USA 117, 3874–3883 (2020).
Google Scholar
Chisholm, S. T., Coaker, G., Day, B. & Staskawicz, B. J. Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803–814 (2006).
Google Scholar
Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).
Google Scholar
Bai, Y. et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528, 364–369 (2015).
Google Scholar
Vogel, C., Bodenhausen, N., Gruissem, W. & Vorholt, J. A. The Arabidopsis leaf transcriptome reveals distinct but also overlapping responses to colonization by phyllosphere commensals and pathogen infection with impact on plant health. New Phytol. 212, 192–207 (2016).
Google Scholar
Dodds, P. N. & Rathjen, J. P. Plant immunity: towards an integrated view of plant–pathogen interactions. Nat. Rev. Genet. 11, 539–548 (2010).
Google Scholar
Stringlis, I. A. et al. Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Plant J. 93, 166–180 (2018).
Google Scholar
He, J. et al. A LysM receptor heteromer mediates perception of arbuscular mycorrhizal symbiotic signal in rice. Mol. Plant 12, 1561–1576 (2019).
Google Scholar
Bozsoki, Z. et al. Ligand-recognizing motifs in plant LysM receptors are major determinants of specificity. Plant Sci. 369, 663–670 (2020).
Google Scholar
Stringlis, I. A., Zhang, H., Pieterse, C. M. J., Bolton, M. D. & de Jonge, R. Microbial small molecules—weapons of plant subversion. Nat. Prod. Rep. 35, 410–433 (2018).
Google Scholar
Kong, H. G., Song, G. C., Sim, H. J. & Ryu, C. M. Achieving similar root microbiota composition in neighbouring plants through airborne signalling. ISME J. 15, 397–408 (2021).
Google Scholar
Vacher, C. et al. The phyllosphere: microbial jungle at the plant–climate interface. Annu. Rev. Ecol. Evol. Syst. 47, 1–24 (2016).
Google Scholar
Thapa, S. & Prasanna, R. Prospecting the characteristics and significance of the phyllosphere microbiome. Ann. Microbiol. 68, 229–245 (2018).
Google Scholar
Vorholt, J. A., Vogel, C., Carlstrom, C. I. & Muller, D. B. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22, 142–155 (2017).
Google Scholar
Chen, X., Wicaksono, W. A., Berg, G. & Cernava, T. Bacterial communities in the plant phyllosphere harbour distinct responders to a broad-spectrum pesticide. Sci. Total Environ. 751, 141799 (2021).
Google Scholar
Liu, Y. X. et al. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell 12, 315–330 (2021).
Google Scholar
Hosokawa, M. et al. Droplet-based microfluidics for high-throughput screening of a metagenomic library for isolation of microbial enzymes. Biosens. Bioelectron. 67, 379–385 (2015).
Google Scholar
Kehe, J. et al. Massively parallel screening of synthetic microbial communities. Proc. Natl Acad. Sci. USA 116, 12804–12809 (2019).
Google Scholar
Zhang, J. et al. High-throughput cultivation and identification of bacteria from the plant root microbiota. Nat. Protoc. 16, 988–1012 (2021).
Google Scholar
Grosskopf, T. & Soyer, O. S. Synthetic microbial communities. Curr. Opin. Microbiol. 18, 72–77 (2014).
Google Scholar
Vogel, C. M., Potthoff, D. B., Schafer, M., Barandun, N. & Vorholt, J. A. Protective role of the Arabidopsis leaf microbiota against a bacterial pathogen. Nat. Microbiol. 6, 1537–1548 (2021).
Google Scholar
Finkel, O. M. et al. A single bacterial genus maintains root growth in a complex microbiome. Nature 587, 103–108 (2020).
Wagner, M. R. et al. Microbe-dependent heterosis in maize. Proc. Natl Acad. Sci. USA 118, e2021965118 (2021).
Google Scholar
Schafer, M., Vogel, C. M., Bortfeld-Miller, M., Mittelviefhaus, M. & Vorholt, J. A. Mapping phyllosphere microbiota interactions in planta to establish genotype–phenotype relationships. Nat. Microbiol. 7, 856–867 (2022).
Google Scholar
Han, B. & Huang, X. Sequencing-based genome-wide association study in rice. Curr. Opin. Plant Biol. 16, 133–138 (2013).
Google Scholar
Roman-Reyna, V. et al. The rice leaf microbiome has a conserved community structure controlled by complex host-microbe interactions. Cell Host Microbe https://doi.org/10.2139/ssrn.3382544 (2019).
Deng, S. et al. Genome wide association study reveals plant loci controlling heritability of the rhizosphere microbiome. ISME J. 15, 3181–3194 (2021).
Google Scholar
Wagner, M. R., Busby, P. E. & Balint-Kurti, P. Analysis of leaf microbiome composition of near-isogenic maize lines differing in broad-spectrum disease resistance. New Phytol. 225, 2152–2165 (2020).
Google Scholar
Wagner, M. R., Roberts, J. H., Balint-Kurti, P. & Holland, J. B. Heterosis of leaf and rhizosphere microbiomes in field-grown maize. New Phytol. 228, 1055–1069 (2020).
Google Scholar
Nobori, T. et al. Transcriptome landscape of a bacterial pathogen under plant immunity. Proc. Natl Acad. Sci. USA 115, E3055–E3064 (2018).
Google Scholar
Xu, L. et al. Holo-omics for deciphering plant–microbiome interactions. Microbiome 9, 69 (2021).
Google Scholar
French, E., Kaplan, I., Iyer-Pascuzzi, A., Nakatsu, C. H. & Enders, L. Emerging strategies for precision microbiome management in diverse agroecosystems. Nat. Plants 7, 256–267 (2021).
Google Scholar
Lemmon, Z. H. et al. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat. Plants 4, 766–770 (2018).
Google Scholar
Kamilaris, A. & Prenafeta-Boldú, F. X. Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018).
Google Scholar
Zhou, L., Zhang, C., Liu, F., Qiu, Z. & He, Y. Application of deep learning in food: a review. Compr. Rev. Food Sci. Food Saf. 18, 1793–1811 (2019).
Google Scholar
Moreno-Indias, I. et al. Statistical and machine learning techniques in human microbiome studies: contemporary challenges and solutions. Front. Microbiol. 12, 635781 (2021).
Google Scholar
Song, P., Wang, J., Guo, X., Yang, W. & Zhao, C. High-throughput phenotyping: breaking through the bottleneck in future crop breeding. Crop J. 9, 633–645 (2021).
Google Scholar
Source: Ecology - nature.com