Ray, D. K., Gerber, J. S., Macdonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).
Google Scholar
Frieler, K. et al. Understanding the weather signal in national crop-yield variability. Earths Future 5, 605–616 (2017).
Google Scholar
Vogel, E. et al. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 14, 054010 (2019).
Google Scholar
Zscheischler, J. et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 1, 333–347 (2020).
Google Scholar
Ridder, N. N., Ukkola, A. M., Pitman, A. J. & Perkins-Kirkpatrick, S. E. Increased occurrence of high impact compound events under climate change. npj Clim. Atmos. Sci. 5, 3 (2022).
Google Scholar
Lesk, C. & Anderson, W. Decadal variability modulates trends in concurrent heat and drought over global croplands. Environ. Res. Lett. 16, 055024 (2021).
Google Scholar
Sarhadi, A., Ausín, M. C., Wiper, M. P., Touma, D. & Diffenbaugh, N. S. Multidimensional risk in a nonstationary climate: joint probability of increasingly severe warm and dry conditions. Sci. Adv. 4, eaau3487 (2018).
Google Scholar
Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).
Google Scholar
Lobell, D. B., Bänziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1, 42–45 (2011).
Google Scholar
Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).
Google Scholar
Buckley, T. N. How do stomata respond to water status? New Phytol. 224, 21–36 (2019).
Google Scholar
Miralles, D. G., Gentine, P., Seneviratne, S. I. & Teuling, A. J. Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann. NY Acad. Sci. 1436, 19–35 (2019).
Google Scholar
Mueller, B. & Seneviratne, S. I. Hot days induced by precipitation deficits at the global scale. Proc. Natl Acad. Sci. USA 109, 12398–12403 (2012).
Google Scholar
Cohen, I., Zandalinas, S. I., Huck, C., Fritschi, F. B. & Mittler, R. Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiol. Plant 171, 66–76 (2021).
Google Scholar
Ostmeyer, T. et al. Impacts of heat, drought, and their interaction with nutrients on physiology, grain yield, and quality in field crops. Plant Physiol. Rep. 25, 549–568 (2020).
Google Scholar
Matiu, M., Ankerst, D. P. & Menzel, A. Interactions between temperature and drought in global and regional crop yield variability during 1961–2014. PLoS ONE 12, e0178339 (2017).
Google Scholar
Scheff, J., Mankin, J. S., Coats, S. & Liu, H. CO2-plant effects do not account for the gap between dryness indices and projected dryness impacts in CMIP6 or CMIP5. Environ. Res. Lett. 16, 034018 (2021).
Google Scholar
Ukkola, A. M., De Kauwe, M. G., Roderick, M. L., Abramowitz, G. & Pitman, A. J. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys. Res. Lett. 47, e2020GL087820 (2020).
Google Scholar
Allan, R. P. et al. Advances in understanding large-scale responses of the water cycle to climate change. Ann. NY Acad. Sci. 1472, 49–75 (2020).
Google Scholar
Ault, T. R. On the essentials of drought in a changing climate. Science 368, 256–260 (2020).
Google Scholar
Fowler, H. J. et al. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ. 2, 107–122 (2021).
Google Scholar
Raymond, C. et al. Understanding and managing connected extreme events. Nat. Clim. Change 10, 611–621 (2020).
Google Scholar
Mills, G. et al. Closing the global ozone yield gap: quantification and cobenefits for multistress tolerance. Glob. Chang. Biol. 24, 4869–4893 (2018).
Google Scholar
Pandey, P., Irulappan, V., Bagavathiannan, M. V. & Senthil-Kumar, M. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front. Plant Sci. 8, 537 (2017).
Google Scholar
Couasnon, A. et al. Measuring compound flood potential from river discharge and storm surge extremes at the global scale. Nat. Hazards Earth Syst. Sci. 20, 489–504 (2020).
Google Scholar
Nguyen, L. T. T. et al. Flooding and prolonged drought have differential legacy impacts on soil nitrogen cycling, microbial communities and plant productivity. Plant Soil 431, 371–387 (2018).
Google Scholar
Medrano, H., Escalona, J. M., Bota, J., Gulías, J. & Flexas, J. Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann. Bot. 89, 895–905 (2002).
Google Scholar
Scafaro, A. P. et al. Responses of leaf respiration to heatwaves. Plant Cell Environ. 44, 2090–2101 (2021).
Google Scholar
Atkin, O. K. & Tjoelker, M. G. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8, 343–351 (2003).
Google Scholar
Lukac, M., Gooding, M. J., Griffiths, S. & Jones, H. E. Asynchronous flowering and within-plant flowering diversity in wheat and the implications for crop resilience to heat. Ann. Bot. 109, 843–850 (2012).
Google Scholar
Coast, O., Murdoch, A. J., Ellis, R. H., Hay, F. R. & Jagadish, K. S. V. Resilience of rice (Oryza spp.) pollen germination and tube growth to temperature stress. Plant. Cell Environ. 39, 26–37 (2016).
Google Scholar
Li, Y., Guan, K., Schnitkey, G. D., Delucia, E. & Peng, B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Chang. Biol. https://doi.org/10.1111/gcb.14628 (2019).
Google Scholar
Tian, L. X. et al. How does the waterlogging regime affect crop yield? A global meta-analysis. Front. Plant Sci. 12, 634898 (2021).
Google Scholar
Langan, P. et al. Phenotyping for waterlogging tolerance in crops: current trends and future prospects. J. Exp. Bot. https://doi.org/10.1093/jxb/erac243 (2022).
Google Scholar
Tong, C. et al. Opportunities for improving waterlogging tolerance in cereal crops — physiological traits and genetic mechanisms. Plants 10, 1560 (2021).
Google Scholar
Colmer, T. D., Cox, M. C. H. & Voesenek, L. A. C. J. Root aeration in rice (Oryza sativa): evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations. New Phytol. 170, 767–778 (2006).
Google Scholar
Hattori, Y. et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460, 1026–1030 (2009).
Google Scholar
Prasad, P. V. V., Pisipati, S. R., Momčilović, I. & Ristic, Z. Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J. Agron. Crop Sci. 197, 430–441 (2011).
Google Scholar
Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. & Mittler, R. Abiotic and biotic stress combinations. New Phytol. 203, 32–43 (2014).
Google Scholar
Hussain, H. A. et al. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci. Rep. 9, 3890 (2019).
Google Scholar
Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15–19 (2006).
Google Scholar
Choudhury, F. K., Rivero, R. M., Blumwald, E. & Mittler, R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 90, 856–867 (2017).
Google Scholar
Van Der Wiel, K., Selten, F. M., Bintanja, R., Blackport, R. & Screen, J. A. Ensemble climate-impact modelling: extreme impacts from moderate meteorological conditions. Environ. Res. Lett. 15, 034050 (2020).
Google Scholar
Moore, C. E. et al. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. J. Exp. Bot. 72, 2822–2844 (2021).
Google Scholar
Fahad, S. et al. Crop production under drought and heat stress: plant responses and management options. Front. Plant Sci. 8, 1147 (2017).
Google Scholar
Zandalinas, S. I., Fritschi, F. B. & Mittler, R. Signal transduction networks during stress combination. J. Exp. Bot. 71, 1734–1741 (2020).
Google Scholar
Zhang, H. & Sonnewald, U. Differences and commonalities of plant responses to single and combined stresses. Plant J. 90, 839–855 (2017).
Google Scholar
Zscheischler, J. & Seneviratne, S. I. Dependence of drivers affects risks associated with compound events. Sci. Adv. 3, e1700263 (2017).
Google Scholar
Horton, R. M., Mankin, J. S., Lesk, C., Coffel, E. & Raymond, C. A review of recent advances in research on extreme heat events. Curr. Clim. Change Rep. 2, 242–259 (2016).
Google Scholar
Trenberth, K. E. & Shea, D. J. Relationships between precipitation and surface temperature. Geophys. Res. Lett. 32, L14703 (2005).
Google Scholar
Miralles, D. G., Teuling, A. J., Van Heerwaarden, C. C. & De Arellano, J. V. G. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 7, 345–349 (2014).
Google Scholar
Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).
Google Scholar
Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).
Google Scholar
Koster, R. D., Chang, Y., Wang, H. & Schubert, S. D. Impacts of local soil moisture anomalies on the atmospheric circulation and on remote surface meteorological fields during boreal summer: a comprehensive analysis over North America. J. Clim. 29, 7345–7364 (2016).
Google Scholar
Zhou, S. et al. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Change 11, 38–44 (2021).
Google Scholar
Berg, A., Lintner, B., Findell, K. & Giannini, A. Soil moisture influence on seasonality and large-scale circulation in simulations of the West African monsoon. J. Clim. 30, 2295–2317 (2017).
Google Scholar
Lesk, C. et al. Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields. Nat. Food 2, 683–691 (2021).
Google Scholar
Wei, Z. et al. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys. Res. Lett. 44, 2792–2801 (2017).
Google Scholar
Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).
Google Scholar
Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).
Google Scholar
Teuling, A. J. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722–727 (2010).
Google Scholar
Raymond, C. et al. Increasing spatiotemporal proximity of heat and precipitation extremes in a warming world quantified by a large model ensemble. Environ. Res. Lett. 17, 035005 (2022).
Google Scholar
Raymond, C. et al. On the controlling factors for globally extreme humid heat. Geophys. Res. Lett. 48, e2021GL096082 (2021).
Google Scholar
Speizer, S., Raymond, C., Ivanovich, C. & Horton, R. M. Concentrated and intensifying humid heat extremes in the IPCC AR6 regions. Geophys. Res. Lett. 49, e2021GL097261 (2022).
Google Scholar
Ning, G. et al. Rising risks of compound extreme heat‐precipitation events in China. Int. J. Climatol. https://doi.org/10.1002/joc.7561 (2022).
Google Scholar
Thiery, W. et al. Warming of hot extremes alleviated by expanding irrigation. Nat. Commun. 11, 290 (2020).
Google Scholar
Mueller, N. D. et al. Global relationships between cropland intensification and summer temperature extremes over the last 50 years. J. Clim. 30, 7505–7528 (2017).
Google Scholar
Siebert, S., Ewert, F., Eyshi Rezaei, E., Kage, H. & Graß, R. Impact of heat stress on crop yield — on the importance of considering canopy temperature. Environ. Res. Lett. 9, 044012 (2014).
Google Scholar
Singh, D. et al. Distinct influences of land cover and land management on seasonal climate. J. Geophys. Res. Atmos. 123, 12017–12039 (2018).
Google Scholar
Luan, X. & Vico, G. Canopy temperature and heat stress are increased by compound high air temperature and water stress and reduced by irrigation — a modeling analysis. Hydrol. Earth Syst. Sci. 25, 1411–1423 (2021).
Google Scholar
Siebert, S., Webber, H., Zhao, G. & Ewert, F. Heat stress is overestimated in climate impact studies for irrigated agriculture. Environ. Res. Lett. 12, 054023 (2017).
Google Scholar
Sinha, R. et al. Differential regulation of flower transpiration during abiotic stress in annual plants. New Phytol. https://doi.org/10.1111/nph.18162 (2022).
Google Scholar
He, Y., Lee, E. & Mankin, J. S. Seasonal tropospheric cooling in Northeast China associated with cropland expansion. Environ. Res. Lett. 15, 034032 (2020).
Google Scholar
Alter, R. E., Douglas, H. C., Winter, J. M. & Eltahir, E. A. B. Twentieth century regional climate change during the summer in the Central United States attributed to agricultural intensification. Geophys. Res. Lett. 45, 1586–1594 (2018).
Google Scholar
Sánchez, B., Rasmussen, A. & Porter, J. R. Temperatures and the growth and development of maize and rice: a review. Glob. Chang. Biol. 20, 408–417 (2014).
Google Scholar
Prasad, P. V. V., Bheemanahalli, R. & Jagadish, S. V. K. Field crops and the fear of heat stress — opportunities, challenges and future directions. Field Crops Res. 200, 114–121 (2017).
Google Scholar
Schauberger, B. et al. Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun. 8, 13931 (2017).
Google Scholar
Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).
Google Scholar
Sadok, W. & Jagadish, S. V. K. The hidden costs of nighttime warming on yields. Trends Plant Sci. 25, 644–651 (2020).
Google Scholar
Troy, T. J., Kipgen, C. & Pal, I. The impact of climate extremes and irrigation on US crop yields. Environ. Res. Lett. 10, 054013 (2015).
Google Scholar
Cook, B. I., Shukla, S. P., Puma, M. J. & Nazarenko, L. S. Irrigation as an historical climate forcing. Clim. Dyn. 44, 1715–1730 (2015).
Google Scholar
Li, Y. et al. Quantifying irrigation cooling benefits to maize yield in the US Midwest. Glob. Chang. Biol. 26, 3065–3078 (2020).
Google Scholar
Entekhabi, B. D. et al. The Soil Moisture Active Passive (SMAP). IEEE Proc. 98, 704–716 (2010).
Google Scholar
Ortiz-Bobea, A., Wang, H., Carrillo, C. M. & Ault, T. R. Unpacking the climatic drivers of US agricultural yields. Environ. Res. Lett. 14, 064003 (2019).
Google Scholar
Rigden, A. J., Mueller, N. D., Holbrook, N. M., Pillai, N. & Huybers, P. Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields. Nat. Food 1, 127–133 (2020).
Google Scholar
Proctor, J., Rigden, A., Chan, D. & Huybers, P. Accurate specification of water availability shows its importance for global crop production. Preprint at EarthArXiv https://doi.org/10.31223/X5ZS7P (2021).
Google Scholar
Carter, E. K., Melkonian, J., Riha, S. J. & Shaw, S. B. Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize. Environ. Res. Lett. 11, 094012 (2016).
Google Scholar
Hamed, R., Van Loon, A. F., Aerts, J. & Coumou, D. Impacts of compound hot-dry extremes on US soybean yields. Earth Syst. Dyn. 12, 1371–1391 (2021).
Google Scholar
Feng, S., Hao, Z., Zhang, X. & Hao, F. Probabilistic evaluation of the impact of compound dry-hot events on global maize yields. Sci. Total Environ. 689, 1228–1234 (2019).
Google Scholar
Haqiqi, I., Grogan, D. S., Hertel, T. W. & Schlenker, W. Quantifying the impacts of compound extremes on agriculture. Hydrol. Earth Syst. Sci. 25, 551–564 (2021).
Google Scholar
Zhu, P., Zhuang, Q., Archontoulis, S. V., Bernacchi, C. & Müller, C. Dissecting the nonlinear response of maize yield to high temperature stress with model-data integration. Glob. Chang. Biol. 25, 2470–2484 (2019).
Google Scholar
Jin, Z. et al. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches. Glob. Chang. Biol. 22, 3112–3126 (2016).
Google Scholar
Filipa Silva Ribeiro, A., Russo, A., Gouveia, C. M., Páscoa, P. & Zscheischler, J. Risk of crop failure due to compound dry and hot extremes estimated with nested copulas. Biogeosciences 17, 4815–4830 (2020).
Google Scholar
Hsiao, J., Swann, A. L. S. & Kim, S. H. Maize yield under a changing climate: the hidden role of vapor pressure deficit. Agric. For. Meteorol. 279, 107692 (2019).
Google Scholar
Heinicke, S., Frieler, K., Jägermeyr, J. & Mengel, M. Global gridded crop models underestimate yield responses to droughts and heatwaves. Environ. Res. Lett. 17, 044026 (2022).
Google Scholar
Cook, B. I. et al. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earths Future 8, e2019EF001461 (2020).
Google Scholar
He, Y., Hu, X., Xu, W., Fang, J. & Shi, P. Increased probability and severity of compound dry and hot growing seasons over world’s major croplands. Sci. Total Environ. 824, 153885 (2022).
Google Scholar
Wu, Y. et al. Global observations and CMIP6 simulations of compound extremes of monthly temperature and precipitation. GeoHealth 5, e2021GH000390 (2021).
Google Scholar
Zhang, Y., Hao, Z., Zhang, X. & Hao, F. Anthropogenically forced increases in compound dry and hot events at the global and continental scales. Environ. Res. Lett. 17, 024018 (2022).
Google Scholar
Chen, Y., Liao, Z., Shi, Y., Tian, Y. & Zhai, P. Detectable increases in sequential flood-heatwave events across China during 1961–2018. Geophys. Res. Lett. 48, e2021GL092549 (2021).
Raymond, C., Matthews, T. & Horton, R. M. The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 6, eaaw1838 (2020).
Google Scholar
Vogel, M. M. et al. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture–temperature feedbacks. Geophys. Res. Lett. 44, 1511–1519 (2017).
Google Scholar
Garcia-Herrera, R., Díaz, J., Trigo, R. M., Luterbacher, J. & Fischer, E. M. A review of the European summer heat wave of 2003. Crit. Rev. Environ. Sci. Technol. 40, 267–306 (2010).
Google Scholar
Wegren, S. Food security and Russia’s 2010 drought. Eurasian Geogr. Econ. 52, 140–156 (2011).
Google Scholar
Christian, J. I., Basara, J. B., Hunt, E. D., Otkin, J. A. & Xiao, X. Flash drought development and cascading impacts associated with the 2010 Russian heatwave. Environ. Res. Lett. 15, 094078 (2020).
Google Scholar
Glotter, M. & Elliott, J. Simulating US agriculture in a modern Dust Bowl drought. Nat. Plants 3, 16193 (2016).
Google Scholar
Yuan, X., Wang, L. & Wood, E. F. Anthropogenic intensification of southern African flash droughts as exemplified by the 2015/16 season. Bull. Am. Meteorol. Soc. 99, S86–S90 (2018).
Google Scholar
Ben-Ari, T. et al. Causes and implications of the unforeseen 2016 extreme yield loss in the breadbasket of France. Nat. Commun. 9, 1627 (2018).
Google Scholar
Gampe, D. et al. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Change 11, 772–779 (2021).
Google Scholar
Iizumi, T. & Ramankutty, N. Changes in yield variability of major crops for 1981–2010 explained by climate change. Environ. Res. Lett. 11, 034003 (2016).
Google Scholar
Brás, T. A., Seixas, J., Carvalhais, N. & Jagermeyr, J. Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environ. Res. Lett. 16, 065012 (2021).
Google Scholar
Lobell, D. B., Deines, J. M. & Di Tommaso, S. Changes in the drought sensitivity of US maize yields. Nat. Food 1, 729–735 (2020).
Google Scholar
Seneviratne, S. I. et al. Climate extremes, land–climate feedbacks and land-use forcing at 1.5 °C. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20160450 (2018).
Google Scholar
Pfleiderer, P., Schleussner, C. F., Kornhuber, K. & Coumou, D. Summer weather becomes more persistent in a 2 °C world. Nat. Clim. Change 9, 666–671 (2019).
Google Scholar
Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).
Google Scholar
Dai, A., Zhao, T. & Chen, J. Climate change and drought: a precipitation and evaporation perspective. Curr. Clim. Chang. Rep. 4, 301–312 (2018).
Google Scholar
Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).
Google Scholar
Lesk, C., Coffel, E. & Horton, R. Net benefits to US soy and maize yields from intensifying hourly rainfall. Nat. Clim. Change 10, 819–822 (2020).
Google Scholar
Goulart, H. M. D., Van Der Wiel, K., Folberth, C., Balkovic, J. & Van Den Hurk, B. Weather-induced crop failure events under climate change: a storyline approach. Earth Syst. Dyn. https://doi.org/10.5194/esd-2021-40 (2021).
Google Scholar
Franke, J. A. et al. Agricultural breadbaskets shift poleward given adaptive farmer behavior under climate change. Glob. Chang. Biol. 28, 167–181 (2022).
Google Scholar
Jägermeyr, J. et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2, 873–885 (2021).
Google Scholar
Waha, K. et al. Multiple cropping systems of the world and the potential for increasing cropping intensity. Glob. Environ. Chang. 64, 102131 (2020).
Google Scholar
Zhu, T., Fonseca De Lima, C. F. & De Smet, I. The heat is on: how crop growth, development, and yield respond to high temperature. J. Exp. Bot. 72, 7359–7373 (2021).
Lizaso, J. I. et al. Impact of high temperatures in maize: phenology and yield components. Field Crops Res. 216, 129–140 (2018).
Google Scholar
Rezaei, E. E., Siebert, S. & Ewert, F. Intensity of heat stress in winter wheat — phenology compensates for the adverse effect of global warming. Environ. Res. Lett. 10, 024012 (2015).
Google Scholar
Liu, K. et al. Climate change shifts forward flowering and reduces crop waterlogging stress. Environ. Res. Lett. 16, 094017 (2021).
Google Scholar
Bagley, J. et al. The influence of photosynthetic acclimation to rising CO2 and warmer temperatures on leaf and canopy photosynthesis models. Global Biogeochem. Cycles https://doi.org/10.1002/2014GB004848 (2015).
Google Scholar
Hossain, M. A. et al. Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms. Protoplasma 255, 399–412 (2018).
Google Scholar
Wolz, K. J., Wertin, T. M., Abordo, M., Wang, D. & Leakey, A. D. B. Diversity in stomatal function is integral to modelling plant carbon and water fluxes. Nat. Ecol. Evol. 1, 1292–1298 (2017).
Google Scholar
Ainsworth, E. A. & Long, S. P. 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Glob. Chang. Biol. 27, 27–49 (2021).
Google Scholar
Toreti, A. et al. Narrowing uncertainties in the effects of elevated CO2 on crops. Nat. Food 1, 775–782 (2020).
Google Scholar
Myers, S. S. et al. Climate change and global food systems: potential impacts on food security and undernutrition. Annu. Rev. Public Health 38, 259–277 (2017).
Google Scholar
Skinner, C. B., Poulsen, C. J. & Mankin, J. S. Amplification of heat extremes by plant CO2 physiological forcing. Nat. Commun. 9, 1094 (2018).
Google Scholar
Houshmandfar, A., Fitzgerald, G. J., Armstrong, R., Macabuhay, A. A. & Tausz, M. Modelling stomatal conductance of wheat: an assessment of response relationships under elevated CO2. Agric. For. Meteorol. 214–215, 117–123 (2015).
Google Scholar
Chavan, S. G., Duursma, R. A., Tausz, M. & Ghannoum, O. Elevated CO2 alleviates the negative impact of heat stress on wheat physiology but not on grain yield. J. Exp. Bot. 70, 6447–6459 (2019).
Google Scholar
Gray, S. B. et al. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat. Plants 2, 16132 (2016).
Google Scholar
Coffel, E. D. et al. Future hot and dry years worsen Nile basin water scarcity despite projected precipitation increases. Earths Future 7, 967–977 (2019).
Google Scholar
Mishra, V., Thirumalai, K., Singh, D. & Aadhar, S. Future exacerbation of hot and dry summer monsoon extremes in India. npj Clim. Atmos. Sci. 3, 10 (2020).
Google Scholar
Bevacqua, E., Zappa, G., Lehner, F. & Zscheischler, J. Precipitation trends determine future occurrences of compound hot–dry events. Nat. Clim. Change 12, 350–355 (2022).
Google Scholar
Seager, R. et al. Climate variability and change of Mediterranean-type climates. J. Clim. 32, 2887–2915 (2019).
Google Scholar
Vogel, M. M., Hauser, M. & Seneviratne, S. I. Projected changes in hot, dry and wet extreme events’ clusters in CMIP6 multi-model ensemble. Environ. Res. Lett. 15, 094021 (2020).
Google Scholar
Zhou, S. et al. Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl Acad. Sci. USA 116, 18848–18853 (2019).
Google Scholar
Byrne, M. P. Amplified warming of extreme temperatures over tropical land. Nat. Geosci. 14, 837–841 (2021).
Google Scholar
McDermid, S. S. et al. Disentangling the regional climate impacts of competing vegetation responses to elevated atmospheric CO2. J. Geophys. Res. Atmos. 126, e2020JD034108 (2021).
Google Scholar
Swann, A. L. S., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).
Google Scholar
Ali, H., Fowler, H. J., Lenderink, G., Lewis, E. & Pritchard, D. Consistent large-scale response of hourly extreme precipitation to temperature variation over land. Geophys. Res. Lett. https://doi.org/10.1029/2020GL090317 (2021).
Google Scholar
Dai, A., Rasmussen, R. M., Liu, C., Ikeda, K. & Prein, A. F. A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations. Clim. Dyn. 55, 343–368 (2020).
Google Scholar
Fishman, R. More uneven distributions overturn benefits of higher precipitation for crop yields. Environ. Res. Lett. 11, 024004 (2016).
Google Scholar
Shortridge, J. Observed trends in daily rainfall variability result in more severe climate change impacts to agriculture. Clim. Chang. 157, 429–444 (2019).
Google Scholar
Guan, K., Sultan, B., Biasutti, M., Baron, C. & Lobell, D. B. What aspects of future rainfall changes matter for crop yields in West Africa? Geophys. Res. Lett. 42, 8001–8010 (2015).
Google Scholar
Byrne, M. P. & O’Gorman, P. A. Trends in continental temperature and humidity directly linked to ocean warming. Proc. Natl Acad. Sci. USA 115, 4863–4868 (2018).
Google Scholar
Coffel, E. D., Horton, R. M. & De Sherbinin, A. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century. Environ. Res. Lett. 13, 014001 (2018).
Google Scholar
Matthews, T. Humid heat and climate change. Prog. Phys. Geogr. 42, 391–405 (2018).
Google Scholar
McKinnon, K. A. & Poppick, A. Estimating changes in the observed relationship between humidity and temperature using noncrossing quantile smoothing splines. J. Agric. Biol. Environ. Stat. 25, 292–314 (2020).
Google Scholar
Parsons, L. A. et al. Global labor loss due to humid heat exposure underestimated for outdoor workers. Environ. Res. Lett. 17, 014050 (2022).
Google Scholar
Ridder, N. N., Pitman, A. J. & Ukkola, A. M. Do CMIP6 climate models simulate global or regional compound events skillfully? Geophys. Res. Lett. 48, e2020GL091152 (2021).
Google Scholar
Hao, Z., Aghakouchak, A. & Phillips, T. J. Changes in concurrent monthly precipitation and temperature extremes. Environ. Res. Lett. 8, 034014 (2013).
Google Scholar
Zhang, B. & Soden, B. J. Constraining climate model projections of regional precipitation change. Geophys. Res. Lett. 46, 10522–10531 (2019).
Google Scholar
Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).
Google Scholar
Butler, E. E., Mueller, N. D. & Huybers, P. Peculiarly pleasant weather for US maize. Proc. Natl Acad. Sci. USA 115, 11935–11940 (2018).
Google Scholar
Lombardozzi, D. L. et al. Simulating agriculture in the Community Land Model Version 5. J. Geophys. Res. Biogeosci. 125, e2019JG005529 (2020).
Google Scholar
Puma, M. J. & Cook, B. I. Effects of irrigation on global climate during the 20th century. J. Geophys. Res. Atmos. 115, D16120 (2010).
Google Scholar
Coffel, E. D., Lesk, C., Winter, J. M., Osterberg, E. C. & Mankin, J. S. Crop–climate feedbacks boost US maize and soy yields. Environ. Res. Lett. 17, 024012 (2022).
Google Scholar
Mueller, N. D. et al. Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Clim. Change 6, 317–322 (2016).
Google Scholar
Zaveri, E. & B. Lobell, D. The role of irrigation in changing wheat yields and heat sensitivity in India. Nat. Commun. 10, 4144 (2019).
Google Scholar
DeLucia, E. H. et al. Are we approaching a water ceiling to maize yields in the United States? Ecosphere 10, e02773 (2019).
Google Scholar
Cook, B. I. et al. Divergent regional climate consequences of maintaining current irrigation rates in the 21st century. J. Geophys. Res. Atmos. 125, e2019JD031814 (2020).
Google Scholar
Tigchelaar, M., Battisti, D. S., Naylor, R. L. & Ray, D. K. Future warming increases probability of globally synchronized maize production shocks. Proc. Natl Acad. Sci. USA 115, 6644–6649 (2018).
Google Scholar
Liu, W. et al. Future climate change significantly alters interannual wheat yield variability over half of harvested areas. Environ. Res. Lett. 16, 094045 (2021).
Google Scholar
Wang, X. et al. Global irrigation contribution to wheat and maize yield. Nat. Commun. 12, 1235 (2021).
Google Scholar
Rosa, L., Chiarelli, D. D., Rulli, M. C., Dell’Angelo, J. & D’Odorico, P. Global agricultural economic water scarcity. Sci. Adv. 6, eaaz6031 (2020).
Google Scholar
Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).
Google Scholar
Livneh, B. & Badger, A. M. Drought less predictable under declining future snowpack. Nat. Clim. Change 10, 452–458 (2020).
Google Scholar
Elliott, J. et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl Acad. Sci. USA 111, 3239–3244 (2014).
Google Scholar
Jägermeyr, J. et al. Integrated crop water management might sustainably halve the global food gap. Environ. Res. Lett. 11, 025002 (2016).
Google Scholar
Rosa, L. et al. Potential for sustainable irrigation expansion in a 3 °C warmer climate. Proc. Natl Acad. Sci. USA 117, 29526–29534 (2020).
Google Scholar
Gleeson, T., Wada, Y., Bierkens, M. F. P. & Van Beek, L. P. H. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).
Google Scholar
Bhattarai, N. et al. The impact of groundwater depletion on agricultural production in India. Environ. Res. Lett. 16, 085003 (2021).
Google Scholar
Nie, W. et al. Irrigation water demand sensitivity to climate variability across the contiguous United States. Water Resour. Res. 57, e2020WR027738 (2021).
Google Scholar
Wu, W.-Y. et al. Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nat. Commun. 11, 3710 (2020).
Google Scholar
Jain, M. et al. Groundwater depletion will reduce cropping intensity in India. Sci. Adv. 7, eabd2849 (2021).
Google Scholar
Kerr, R. B., Hasegawa, T. & Lasco, R. Food, fibre and other ecosystem products. In IPCC WGII Sixth Assessment Report 11–13 Ch. 5 (IPCC, 2022).
Zandalinas, S. I. & Mittler, R. Plant responses to multifactorial stress combination. New Phytol. 234, 1161–1167 (2022).
Google Scholar
Barrett, C. B. et al. Bundling innovations to transform agri-food systems. Nat. Sustain. 3, 974–976 (2020).
Google Scholar
Peng, B. & Guan, K. Harmonizing climate-smart and sustainable agriculture. Nat. Food 2, 853–854 (2021).
Google Scholar
Zabel, F. et al. Large potential for crop production adaptation depends on available future varieties. Glob. Chang. Biol. 27, 3870–3882 (2021).
Google Scholar
Challinor, A. J., Koehler, A.-K., Ramirez-Villegas, J., Whitfield, S. & Das, B. Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat. Clim. Change 6, 954–958 (2016).
Google Scholar
Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).
Google Scholar
Vogel, E. & Meyer, R. Climate Change, Climate Extremes, and Global Food Production — Adaptation in the Agricultural Sector. Resilience: The Science of Adaptation to Climate Change (Elsevier Inc., 2018).
Lal, R. Soil health and carbon management. Food Energy Secur. 5, 212–222 (2016).
Google Scholar
Davis, K. F., Downs, S. & Gephart, J. A. Towards food supply chain resilience to environmental shocks. Nat. Food 2, 54–65 (2021).
Google Scholar
Baldos, U. L. C. & Hertel, T. W. The role of international trade in managing food security risks from climate change. Food Secur. 7, 275–290 (2015).
Google Scholar
Deguines, N. et al. Large-scale trade-off between agricultural intensification and crop pollination services. Front. Ecol. Environ. 12, 212–217 (2014).
Google Scholar
Vyas, S., Dalhaus, T., Kropff, M., Aggarwal, P. & Meuwissen, M. P. M. Mapping global research on agricultural insurance. Environ. Res. Lett. 16, 103003 (2021).
Google Scholar
Hazell, P. & Varangis, P. Best practices for subsidizing agricultural insurance. Glob. Food Sec. 25, 100326 (2020).
Google Scholar
Funk, C. et al. Recognizing the famine early warning systems network over 30 years of drought early warning science advances and partnerships promoting global food security. Bull. Am. Meteorol. Soc. 100, 1011–1027 (2019).
Google Scholar
Reichstein, M., Riede, F. & Frank, D. More floods, fires and cyclones — plan for domino effects on sustainability goals. Nature 592, 347–349 (2021).
Google Scholar
Müller, C. et al. Exploring uncertainties in global crop yield projections in a large ensemble of crop models and CMIP5 and CMIP6 climate scenarios. Environ. Res. Lett. 16, 034040 (2021).
Google Scholar
Hao, Z., Hao, F., Xia, Y., Singh, V. P. & Zhang, X. A monitoring and prediction system for compound dry and hot events. Environ. Res. Lett. 14, 114034 (2019).
Google Scholar
Benami, E. et al. Uniting remote sensing, crop modelling and economics for agricultural risk management. Nat. Rev. Earth Environ. 2, 140–159 (2021).
Google Scholar
Famine Early Warning System Network. East Africa seasonal monitor. FEWS https://fews.net/sites/default/files/documents/reports/EAST_AFRICA_Seasonal_Monitor_20_May_2022_1.pdf (2022).
Becker-Reshef, I. et al. The GEOGLAM crop monitor for AMIS: assessing crop conditions in the context of global markets. Glob. Food Sec. 23, 173–181 (2019).
Google Scholar
GEOGLAM Crop Monitor. Special report: unprecedented 4th consecutive poor rainfall season for the Horn of Africa. Crop Monitor https://cropmonitor.org/documents/SPECIAL/reports/Special_Report_20220523_East_Africa.pdf (2022).
Geange, S. R. et al. The thermal tolerance of photosynthetic tissues: a global systematic review and agenda for future research. New Phytol. 229, 2497–2513 (2021).
Google Scholar
Reynolds, M. P. et al. Harnessing translational research in wheat for climate resilience. J. Exp. Bot. 72, 5134–5157 (2021).
Google Scholar
Makondo, C. C. & Thomas, D. S. G. Climate change adaptation: linking indigenous knowledge with western science for effective adaptation. Environ. Sci. Policy 88, 83–91 (2018).
Google Scholar
Sharafi, L., Zarafshani, K., Keshavarz, M., Azadi, H. & Van Passel, S. Farmers’ decision to use drought early warning system in developing countries. Sci. Total Environ. 758, 142761 (2021).
Google Scholar
Fischer, K. Why new crop technology is not scale-neutral — A critique of the expectations for a crop-based African Green Revolution. Res. Policy 45, 1185–1194 (2016).
Google Scholar
Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).
Google Scholar
Glauber, J., Baldwin, K., Antón, J. & Ziebinska, U. Design principles for agricultural risk management policies. OECD Food Agric. Fish. Pap. https://doi.org/10.1787/1048819f-en (2021).
Google Scholar
Annan, F. & Schlenker, W. Federal crop insurance and the disincentive to adapt to extreme heat. Am. Econ. Rev. 105, 262–266 (2015).
Google Scholar
Deryugina, T. & Konar, M. Impacts of crop insurance on water withdrawals for irrigation. Adv. Water Resour. 110, 437–444 (2017).
Google Scholar
Agrimonti, C., Lauro, M. & Visioli, G. Smart agriculture for food quality: facing climate change in the 21st century. Crit. Rev. Food Sci. Nutr. 61, 971–981 (2021).
Google Scholar
Sloat, L. L. et al. Climate adaptation by crop migration. Nat. Commun. 11, 1243 (2020).
Google Scholar
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
Google Scholar
Willmott, C. J. & Matsuura, K. Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950–1999). University of Delaware http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts.html (2000).
Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations — the CRU TS3.10 dataset. Int. J. Clim. 34, 623–642 (2014).
Google Scholar
Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).
Google Scholar
Beyer, R. M., Hua, F., Martin, P. A., Manica, A. & Rademacher, T. Relocating croplands could drastically reduce the environmental impacts of global food production. Commun. Earth Environ. 3, 49 (2022).
Google Scholar
Source: Ecology - nature.com