in

Differences in fish herbivory among tropical and temperate seaweeds and annual patterns in kelp consumption influence the tropicalisation of temperate reefs

  • Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4(8), 1044–1059 (2020).

    Article 

    Google Scholar 

  • Hobbs, R. J., Valentine, L. E., Standish, R. J. & Jackson, S. T. Movers and stayers: Novel assemblages in changing environments. Trends Ecol. Evol. 33, 116–128 (2017).

    Article 

    Google Scholar 

  • Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).

    Article 

    Google Scholar 

  • Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: Altered species interactions are more important than direct effects. Glob. Change Biol. 20, 2221–2229 (2014).

    Article 
    ADS 

    Google Scholar 

  • Gómez-Aparicio, L., García-Valdés, R., Ruíz-Benito, P. & Zavala, M. A. Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: Implications for forest management under global change. Glob. Change Biol. 17, 2400–2414 (2011).

    Article 
    ADS 

    Google Scholar 

  • Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science https://doi.org/10.1126/science.aai9214 (2017).

    Article 

    Google Scholar 

  • Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671. https://doi.org/10.1126/science.aaf7671 (2016).

    Article 
    CAS 

    Google Scholar 

  • Vergés, A. et al. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B-Biol. Sci. 281, 20140846. https://doi.org/10.1098/rspb.2014.0846 (2014).

    Article 

    Google Scholar 

  • Poore, A. G. B. et al. Global patterns in the impact of marine herbivores on benthic primary producers. Ecol. Lett. 15, 912–922. https://doi.org/10.1111/j.1461-0248.2012.01804.x (2012).

    Article 

    Google Scholar 

  • Bennett, S., Wernberg, T., Harvey, E. S., Santana-Garcon, J. & Saunders, B. J. Tropical herbivores provide resilience to a climate-mediated phase shift on temperate reefs. Ecol. Lett. 18, 714–723 (2015).

    Article 

    Google Scholar 

  • Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory and loss of kelp. Proc. Natl. Acad. Sci. 113(48), 13791–13796 (2016).

    Article 
    ADS 

    Google Scholar 

  • Vergés, A. et al. Tropical rabbitfish and the deforestation of a warming temperate sea. J. Ecol. 102, 1518–1527. https://doi.org/10.1111/1365-2745.12324 (2014).

    Article 

    Google Scholar 

  • Kumagai, N. H. et al. Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming. Proc. Natl. Acad. Sci. 115, 8990–8995 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Demko, A. M. et al. Declines in plant palatability from polar to tropical latitudes depend on herbivore and plant identity. Ecology 98, 2312–2321. https://doi.org/10.1002/ecy.1918 (2017).

    Article 

    Google Scholar 

  • Floeter, S. R., Behrens, M. D., Ferreira, C. E. L., Paddack, M. J. & Horn, M. H. Geographical gradients of marine herbivorous fishes: Patterns and processes. Mar Biol 147, 1435–1447 (2005).

    Article 

    Google Scholar 

  • Longo, G. O., Hay, M. E., Ferreira, C. E. L. & Floeter, S. R. Trophic interactions across 61 degrees of latitude in the Western Atlantic. Glob. Ecol. Biogeogr. 28, 107–117. https://doi.org/10.1111/geb.12806 (2019).

    Article 

    Google Scholar 

  • Bolser, R. & Hay, M. Are tropical plants better defended? Palatability and defenses of temperate versus tropical seaweeds. Ecology 77, 2269–2286 (1996).

    Article 

    Google Scholar 

  • Borer, E. T. et al. Global biogeography of autotroph chemistry: is insolation a driving force?. Oikos 122, 1121–1130. https://doi.org/10.1111/j.1600-0706.2013.00465.x (2013).

    Article 
    CAS 

    Google Scholar 

  • Miranda, T. et al. Convictfish on the move: Variation in growth and trophic niche space along a latitudinal gradient. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsz098%JICESJournalofMarineScience (2019).

    Article 

    Google Scholar 

  • Linton, S. M. The structure and function of cellulase (endo-β-1, 4-glucanase) and hemicellulase (β-1, 3-glucanase and endo-β-1, 4-mannase) enzymes in invertebrates that consume materials ranging from microbes, algae to leaf litter. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 240, 110354 (2020).

    Article 
    CAS 

    Google Scholar 

  • Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925. https://doi.org/10.1038/nclimate1958 (2013).

    Article 
    ADS 

    Google Scholar 

  • Nakamura, Y., Feary, D. A., Kanda, M. & Yamaoka, K. Tropical fishes dominate temperate reef fish communities within western Japan. PLoS ONE 8, e81107 (2013).

    Article 
    ADS 

    Google Scholar 

  • Tanaka, K., Taino, S., Haraguchi, H., Prendergast, G. & Hiraoka, M. Warming off southwestern Japan linked to distributional shifts of subtidal canopy-forming seaweeds. Ecol. Evol. 2, 2854–2865. https://doi.org/10.1002/ece3.391 (2012).

    Article 

    Google Scholar 

  • Pessarrodona, A. et al. Homogenization and miniaturization of habitat structure in temperate marine forests. Glob. Change Biol. 27, 5262–5275 (2021).

    Article 
    CAS 

    Google Scholar 

  • Yamano, H., Sugihara, K. & Nomura, K. Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys. Res. Lett. 38, L04601. https://doi.org/10.1029/2010gl046474 (2011).

    Article 
    ADS 

    Google Scholar 

  • Mezaki, T. & Kubota, S. Changes of hermatypic coral community in coastal sea area of Kochi, high-latitude Japan. Aquabiology 201, 332–337 (2012).

    Google Scholar 

  • Serisawa, Y., Imoto, Z., Ishikawa, T. & Ohno, M. Decline of the Ecklonia cava population associated with increased seawater temperatures in Tosa Bay, southern Japan. Fish Sci 70, 189–191. https://doi.org/10.1111/j.0919-9268.2004.00788.x (2004).

    Article 
    CAS 

    Google Scholar 

  • Kiriyama, T., Mitsunaga, N., Yasumoto, S., Fujii, A. & Yotsui, T. Undergrown phenomenon of brown alga, Hizikia fusiformis, thought to be caused by grazing of herbivores at Tsutsuura, Tsushima Islands [Japan]. Bulletin of Nagasaki Prefectural Institute of Fisheries (Japan) (1999).

  • Kiriyama, T., Fujii, A. & Fujita, Y. Feeding and characteristic bite marks on Sargassum fusiforme by several herbivorous fishes. Aquac. Sci. 53, 355–365 (2005).

    Google Scholar 

  • Yatsuya, K., Kiriyama, T., Kiyomoto, S., Taneda, T. & Yoshimura, T. On the deterioration process of Ecklonia and Eisenia beds observed in 2013 at Gounoura, Iki Island, Nagasaki Prefecture, Japan.-Initiation of the bed degradation due to high water temperature in summer and subsequent cascading effect by the grazing of herbivorous fish in autumn. Algal Resour. 7, 79–94 (2014).

    Google Scholar 

  • Noda, M., Ohara, H., Murase, N., Ikeda, I. & Yamamoto, K. The grazing of Eisenia bicyclis and several species of Sargassaceous and Cystoseiraceous seaweeds by Siganus fuscescens in relation to the differences of species composition of their seaweed beds. Nippon Suisan Gakkaishi 80, 201–213 (2014).

    Article 

    Google Scholar 

  • Noda, M., Kinoshita, J., Tanada, N. & Murase, N. Characteristics of bite scars observed in kelp forests of Lessoniaceae denuded by short-term foraging damages of the herbivorous fish Siganus fuscecens. J. Natl. Fish. Univ. 66, 111–122 (2018).

    Google Scholar 

  • Wernberg, T. et al. Seaweed communities in retreat from ocean warming. Curr. Biol. 21, 1828–1832. https://doi.org/10.1016/j.cub.2011.09.028 (2011).

    Article 
    CAS 

    Google Scholar 

  • Terazono, Y., Nakamura, Y., Imoto, Z. & Hiraoka, M. Fish response to expanding tropical Sargassum beds on the temperate coasts of Japan. Mar. Ecol. Prog. Ser. 464, 209–220. https://doi.org/10.3354/meps09873 (2012).

    Article 
    ADS 

    Google Scholar 

  • Duffy, J. E. & Hay, M. E. Seaweed adaptations to herbivory – chemical, structural, and morphological defenses are often adjusted to spatial or temporal patterns of attack. Bioscience 40, 368–375 (1990).

    Article 

    Google Scholar 

  • Endo, H., Suehiro, K., Kinoshita, J. & Agatsuma, Y. Combined effects of temperature and nutrient enrichment on palatability of the brown alga Sargassum yezoense (Yamada) Yoshida & T. Konno. Am. J. Plant Sci. 6, 275 (2015).

    Article 
    CAS 

    Google Scholar 

  • Clements, K. D., German, D. P., Piché, J., Tribollet, A. & Choat, J. H. Integrating ecological roles and trophic diversification on coral reefs: Multiple lines of evidence identify parrotfishes as microphages. Biol. J. Linn. Soc. 120, 729–751. https://doi.org/10.1111/bij.12914 (2017).

    Article 

    Google Scholar 

  • Wang, Y., Naumann, U., Wright, S. T. & Warton, D. I. mvabund–an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474 (2012).

    Article 

    Google Scholar 

  • Wilson, S. K., Bellwood, D. R., Choat, J. H. & Furnas, M. J. Detritus in the epilithic algal matrix and its use by coral reef fishes. Oceanogr. Mar. Biol. Annu. Rev. 41, 279–309 (2003).

    Google Scholar 

  • Helfman, G. S. in The Behaviour of Teleost Fishes 366–387 (Springer, 1986).

  • Prince, J., LeBlanc, W. & Maciá, S. Design and analysis of multiple choice feeding preference data. Oecologia 138, 1–4 (2004).

    Article 
    ADS 

    Google Scholar 

  • Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3 3 (2020).

  • Ohno, M. & Ishikawa, M. Physiological ecology of brown alga, Ecklonia on coast of Tosa Bay, southern Japan. I. Seasonal variation of Ecklonia bed. Rep. USA Marine Biol. Inst. Kochi Univ. 4, 59–73 (1982).

    Google Scholar 

  • Agostini, S. et al. Simplification, not “tropicalization”, of temperate marine ecosystems under ocean warming and acidification. Glob. Change Biol. 27, 4771–4784 (2021).

    Article 
    CAS 

    Google Scholar 

  • Clements, K. & Choat, J. Influence of season, ontogeny and tide on the diet of the temperate marine herbivorous fish Odax pullus (Odacidae). Mar. Biol. 117, 213–220 (1993).

    Article 

    Google Scholar 

  • Mizuta, H., Hayasaki, J. & Yamamoto, H. Relationship between nitrogen content and sorus formation in the brown alga Laminaria japonica cultivated in southern Hokkaido, Japan. Fish. Sci. 64, 909–913 (1998).

    Article 
    CAS 

    Google Scholar 

  • Kumura, T., Yasui, H. & Mizuta, H. Nutrient requirement for zoospore formation in two alariaceous plants Undaria pinnatifida (Harvey) Suringar and Alaria crassifolia Kjellman (Phaeophyceae: Laminariales). Fish. Sci. 72, 860–869 (2006).

    Article 
    CAS 

    Google Scholar 

  • Qiu, Z. et al. Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp. Proc. R. Soc. B 286, 20181887 (2019).

    Article 

    Google Scholar 

  • Hoey, A. S. & Bellwood, D. R. Limited functional redundancy in a high diversity system: Single species dominates key ecological process on coral reefs. Ecosystems 12, 1316–1328. https://doi.org/10.1007/s10021-009-9291-z (2009).

    Article 

    Google Scholar 

  • Streit, R. P., Hoey, A. S. & Bellwood, D. R. Feeding characteristics reveal functional distinctions among browsing herbivorous fishes on coral reefs. Coral Reefs 34, 1037–1047 (2015).

    Article 
    ADS 

    Google Scholar 

  • Van Alstyne, K. L. & Paul, V. J. The biogeography of polyphenolic compounds in marine macroalgae – Temperate brown algal defenses deter feeding by tropical herbivorous fishes. Oecologia 84, 158–163 (1990).

    Article 
    ADS 

    Google Scholar 

  • Targett, N. M., Boettcher, A. A., Targett, T. E. & Vrolijk, N. H. Tropical marine herbivore assimilation of phenolic-rich plants. Oecologia 103, 170–179 (1995).

    Article 
    ADS 

    Google Scholar 

  • Prado, P. & Heck, K. L. Seagrass selection by omnivorous and herbivorous consumers: Determining factors. Mar. Ecol. Prog. Ser. 429, 45–55. https://doi.org/10.3354/meps09076 (2011).

    Article 
    ADS 

    Google Scholar 

  • Montgomery, W. L. & Gerking, S. D. Marine macroalgae as foods for fishes: an evaluation of potential food quality. Environ. Biol. Fish. 5, 143–153 (1980).

    Article 

    Google Scholar 

  • Duffy, J. & Paul & V.J.,. Prey nutritional quality and the effectiveness of chemical defenses against tropical reef fishes. Oecologia 90, 333–339 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Michael, P. J., Hyndes, G. A., Vanderklift, M. A. & Vergés, A. Identity and behaviour of herbivorous fish influence large-scale spatial patterns of macroalgal herbivory in a coral reef. Mar. Ecol. Prog. Ser. 482, 227–240 (2013).

    Article 
    ADS 

    Google Scholar 

  • Bennett, S. & Bellwood, D. R. Latitudinal variation in macroalgal consumption by fishes on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 426, 241–252 (2011).

    Article 
    ADS 

    Google Scholar 

  • Zarco-Perello, S., Wernberg, T., Langlois, T. J. & Vanderklift, M. A. Tropicalization strengthens consumer pressure on habitat-forming seaweeds. Sci. Rep. 7, 820. https://doi.org/10.1038/s41598-017-00991-2 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Smith, S. M. et al. Tropicalisation and kelp loss shift trophic composition and lead to more winners than losers in fish communities. Glob. Change Biol. 27(11), 2537–2548 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zarco-Perello, S. et al. Range-extending tropical herbivores increase diversity, intensity and extent of herbivory functions in temperate marine ecosystems. Funct. Ecol. 34, 2411–2421. https://doi.org/10.1111/1365-2435.13662 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Oldest DNA reveals 2-million-year-old ecosystem

    Decarbonization amid global crises