in

Biomechanical traits of salt marsh vegetation are insensitive to future climate scenarios

  • Narayan, S. et al. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS ONE 11, e0154735 (2016).

    Article 

    Google Scholar 

  • Schürch, M., Rapaglia, J., Liebetrau, V., Vafeidis, A. T. & Reise, K. Salt marsh accretion and storm tide variation: An example from a barrier island in the North Sea. ESCO 35, 486–500 (2012).

    Google Scholar 

  • de Groot, A. V., Veeneklaas, R. M., Kuijper, D. P. & Bakker, J. P. Spatial patterns in accretion on barrier-island salt marshes. Geomorphology 134, 280–296 (2011).

    Article 
    ADS 

    Google Scholar 

  • Temmerman, S. et al. Ecosystem-based coastal defence in the face of global change. Nature 504, 79–83 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Barbier, E. B. et al. Coastal ecosystem: Based management with nonlinear ecologial functions and values. Science 319, 321–323 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schoonees, T. et al. Hard structures for coastal protection, towards greener designs. Estuaries Coasts 21, 755 (2019).

    Google Scholar 

  • IPCC. Summary for Policymakers. in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021).

  • Lenssen, G. M., Lamers, J., Stroetenga, M. & Rozema, J. CO2 and biosphere 379–390 (Kluwer Academic Publishers, 1993).

    Book 

    Google Scholar 

  • Cherry, J. A., McKee, K. L. & Grace, J. B. Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea-level rise. J. Ecol. 97, 67–77 (2009).

    Article 

    Google Scholar 

  • Arp, W. J., Drake, B. G., Pockman, W. T., Curtis, P. S. & Whigham, D. F. CO2 and Biosphere 133–143 (Kluwer Academic Publishers, 1993).

    Book 

    Google Scholar 

  • Cao, H. et al. Wave effects on seedling establishment of three pioneer marsh species: survival, morphology and biomechanics. Ann. Bot. 125, 345–352 (2020).

    Article 

    Google Scholar 

  • Puijalon, S. et al. Plant resistance to mechanical stress: Evidence of an avoidance-tolerance trade-off. New Phytol. 191, 1141–1149 (2011).

    Article 
    CAS 

    Google Scholar 

  • Niklas, K. Plant Biomechanics: An Engineering Approach to Plant Form and Function (University of Chicago Press, 1992).

    Google Scholar 

  • Silinski, A. et al. Effects of wind waves versus ship waves on tidal marsh plants: A flume study on different life stages of Scirpus maritimus. PLoS ONE 10, e0118687 (2015).

    Article 

    Google Scholar 

  • Rupprecht, F., Möller, I., Evans, B. R., Spencer, T. & Jensen, K. Biophysical properties of salt marsh canopies: Quantifying plant stem flexibility and above ground biomass. Coast. Eng. 100, 48–57 (2015).

    Article 

    Google Scholar 

  • Paul, M. & de los Santos, C. B. Variation in flexural, morphological, and biochemical leaf properties of eelgrass (Zostera marina) along the European Atlantic climate regions. Mar. Biol. 166, 2187 (2019).

    Article 

    Google Scholar 

  • Carus, J., Paul, M. & Schröder, B. Vegetation as self-adaptive coastal protection: Reduction of current velocity and morphologic plasticity of a brackish marsh pioneer. Ecol. Evol. 6, 1579–1589 (2016).

    Article 

    Google Scholar 

  • Callaghan, F. M. et al. A submersible device for measuring drag forces on aquatic plants and other organisms. NZ J. Mar. Freshw. Res. 41, 119–127 (2007).

    Article 

    Google Scholar 

  • Paul, M., Bouma, T. J. & Amos, C. L. Wave attenuation by submerged vegetation: combining the effect of organism traits and tidal current. Mar. Ecol. Prog. Ser. 444, 31–41 (2012).

    Article 
    ADS 

    Google Scholar 

  • Taphorn, M., Villanueva, R., Paul, M., Visscher, J. H. & Schlurmann, T. Flow field and wake structure characteristics imposed by single seagrass blade surrogates. J. Ecohydraul. 1, 1–13 (2021).

    Google Scholar 

  • Lightbody, A. F. & Nepf, H. M. Prediction of velocity profiles and longitudinal dispersion in emergent salt marsh vegetation. Limnol. Oceangr 51, 218–228 (2006).

    Article 
    ADS 

    Google Scholar 

  • Kobayashi, N., Raichle, A. W. & Asano, T. Wave attenuation by vegetation. J. Waterway Port Coastal Ocean Eng. 119, 30–48 (1993).

    Article 

    Google Scholar 

  • Villanueva, R., Thom, M., Visscher, J. H., Paul, M. & Schlurmann, T. Wake length of an artificial seagrass meadow: A study of shelter and its feasibility for restoration. J. Ecohydraul. 1, 1–15 (2021).

    Google Scholar 

  • Paul, M. & Amos, C. L. Spatial and seasonal variation in wave attenuation over Zostera noltii. J. Geophys. Res. 116, C08019 (2011).

    ADS 

    Google Scholar 

  • Marjoribanks, T. I. & Paul, M. Modelling flow-induced reconfiguration of variable rigidity aquatic vegetation. J. Hydraul. Res. 1, 1–16 (2021).

    Google Scholar 

  • Schulze, D., Rupprecht, F., Nolte, S. & Jensen, K. Seasonal and spatial within-marsh differences of biophysical plant properties: Implications for wave attenuation capacity of salt marshes. Aquat. Sci. 81, 82 (2019).

    Article 

    Google Scholar 

  • Gillis, L. G. et al. Living on the edge: How traits of ecosystem engineers drive bio-physical interactions at coastal wetland edges. Adv. Water Resour. 166, 104257 (2022).

    Article 

    Google Scholar 

  • Zhao, H. & Chen, Q. Modeling attenuation of storm surge over deformable vegetation: methodology and verification. J. Eng. Mech. 140, 4014090 (2014).

    Google Scholar 

  • Möller, I. et al. Wave attenuation over coastal salt marshes under storm surge conditions. Nat. Geosci 7, 727–731 (2014).

    Article 
    ADS 

    Google Scholar 

  • Maza, M. et al. Large-scale 3-D experiments of wave and current interaction with real vegetation. Part 2. Experimental analysis. Coast. Eng. 106, 73–86 (2015).

    Article 

    Google Scholar 

  • Gray, A. J. & Mogg, R. J. Climate impacts on pioneer saltmarsh plants. Clim. Res. 18, 105–112 (2001).

    Article 

    Google Scholar 

  • Novaes, E., Kirst, M., Chiang, V., Winter-Sederoff, H. & Sederoff, R. Lignin and biomass: A negative correlation for wood formation and lignin content in trees. Plant Physiol. 154, 555–561 (2010).

    Article 
    CAS 

    Google Scholar 

  • Redfield, A. C. Development of a New England salt marsh. Ecol. Monogr. 42, 201–237 (1972).

    Article 

    Google Scholar 

  • Kirwan, M. L. et al. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 37, 1–10 (2010).

    Article 

    Google Scholar 

  • Idier, D., Dumas, F. & Muller, H. Tide-surge interaction in the English Channel. Nat. Hazards Earth Syst. Sci. 12, 3709–3718 (2012).

    Article 
    ADS 

    Google Scholar 

  • Weisse, R., von Storch, H., Niemeyer, H. D. & Knaack, H. Changing North Sea storm surge climate: An increasing hazard?. Ocean Coast. Manag. 68, 58–68 (2012).

    Article 

    Google Scholar 

  • Idier, D., Paris, F., Le Cozannet, G., Boulahya, F. & Dumas, F. Sea-level rise impacts on the tides of the European Shelf. Cont. Shelf Res. 137, 56–71 (2017).

    Article 
    ADS 

    Google Scholar 

  • Marcos, M., Calafat, F. M., Berihuete, Á. & Dangendorf, S. Long-term variations in global sea level extremes. J. Geophys. Res. Oceans 120, 8115–8134 (2015).

    Article 
    ADS 

    Google Scholar 

  • Dangendorf, S., Mudersbach, C., Jensen, J., Anette, G. & Heinrich, H. Seasonal to decadal forcing of high water level percentiles in the German Bight throughout the last century. Ocean Dyn. 46, 277 (2013).

    Google Scholar 

  • de Winter, R. C., Sterl, A. & Ruessink, B. G. Wind extremes in the North Sea Basin under climate change: An ensemble study of 12 CMIP5 GCMs. J. Geophys. Res. Atmos. 118, 1601–1612 (2013).

    Article 
    ADS 

    Google Scholar 

  • Arns, A. et al. Sea-level rise induced amplification of coastal protection design heights. Sci. Rep. 7, 40171 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pansch, A., Winde, V., Asmus, R. & Asmus, H. Tidal benthic mesocosms simulating future climate change scenarios in the field of marine ecology. Limnol. Oceanogr. Methods 14, 257–267 (2016).

    Article 

    Google Scholar 

  • Meehl, G. A. et al. Climate Change 2007: The Physical Science Basis: Summary for Policymakers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).

    Google Scholar 

  • Miler, O., Albayrak, I., Nikora, V. I. & O’Hare, M. T. Biomechanical properties of aquatic plants and their effects on plant–flow interactions in streams and rivers. Aquat. Sci. 74, 31–44 (2012).

    Article 

    Google Scholar 

  • Differences in fish herbivory among tropical and temperate seaweeds and annual patterns in kelp consumption influence the tropicalisation of temperate reefs

    Comparative genomic analyses of four novel Ramlibacter species and the cellulose-degrading properties of Ramlibacter cellulosilyticus sp. nov.