in

Biomechanical traits of salt marsh vegetation are insensitive to future climate scenarios

  • Narayan, S. et al. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS ONE 11, e0154735 (2016).

    Article 

    Google Scholar 

  • Schürch, M., Rapaglia, J., Liebetrau, V., Vafeidis, A. T. & Reise, K. Salt marsh accretion and storm tide variation: An example from a barrier island in the North Sea. ESCO 35, 486–500 (2012).

    Google Scholar 

  • de Groot, A. V., Veeneklaas, R. M., Kuijper, D. P. & Bakker, J. P. Spatial patterns in accretion on barrier-island salt marshes. Geomorphology 134, 280–296 (2011).

    Article 
    ADS 

    Google Scholar 

  • Temmerman, S. et al. Ecosystem-based coastal defence in the face of global change. Nature 504, 79–83 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Barbier, E. B. et al. Coastal ecosystem: Based management with nonlinear ecologial functions and values. Science 319, 321–323 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schoonees, T. et al. Hard structures for coastal protection, towards greener designs. Estuaries Coasts 21, 755 (2019).

    Google Scholar 

  • IPCC. Summary for Policymakers. in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021).

  • Lenssen, G. M., Lamers, J., Stroetenga, M. & Rozema, J. CO2 and biosphere 379–390 (Kluwer Academic Publishers, 1993).

    Book 

    Google Scholar 

  • Cherry, J. A., McKee, K. L. & Grace, J. B. Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea-level rise. J. Ecol. 97, 67–77 (2009).

    Article 

    Google Scholar 

  • Arp, W. J., Drake, B. G., Pockman, W. T., Curtis, P. S. & Whigham, D. F. CO2 and Biosphere 133–143 (Kluwer Academic Publishers, 1993).

    Book 

    Google Scholar 

  • Cao, H. et al. Wave effects on seedling establishment of three pioneer marsh species: survival, morphology and biomechanics. Ann. Bot. 125, 345–352 (2020).

    Article 

    Google Scholar 

  • Puijalon, S. et al. Plant resistance to mechanical stress: Evidence of an avoidance-tolerance trade-off. New Phytol. 191, 1141–1149 (2011).

    Article 
    CAS 

    Google Scholar 

  • Niklas, K. Plant Biomechanics: An Engineering Approach to Plant Form and Function (University of Chicago Press, 1992).

    Google Scholar 

  • Silinski, A. et al. Effects of wind waves versus ship waves on tidal marsh plants: A flume study on different life stages of Scirpus maritimus. PLoS ONE 10, e0118687 (2015).

    Article 

    Google Scholar 

  • Rupprecht, F., Möller, I., Evans, B. R., Spencer, T. & Jensen, K. Biophysical properties of salt marsh canopies: Quantifying plant stem flexibility and above ground biomass. Coast. Eng. 100, 48–57 (2015).

    Article 

    Google Scholar 

  • Paul, M. & de los Santos, C. B. Variation in flexural, morphological, and biochemical leaf properties of eelgrass (Zostera marina) along the European Atlantic climate regions. Mar. Biol. 166, 2187 (2019).

    Article 

    Google Scholar 

  • Carus, J., Paul, M. & Schröder, B. Vegetation as self-adaptive coastal protection: Reduction of current velocity and morphologic plasticity of a brackish marsh pioneer. Ecol. Evol. 6, 1579–1589 (2016).

    Article 

    Google Scholar 

  • Callaghan, F. M. et al. A submersible device for measuring drag forces on aquatic plants and other organisms. NZ J. Mar. Freshw. Res. 41, 119–127 (2007).

    Article 

    Google Scholar 

  • Paul, M., Bouma, T. J. & Amos, C. L. Wave attenuation by submerged vegetation: combining the effect of organism traits and tidal current. Mar. Ecol. Prog. Ser. 444, 31–41 (2012).

    Article 
    ADS 

    Google Scholar 

  • Taphorn, M., Villanueva, R., Paul, M., Visscher, J. H. & Schlurmann, T. Flow field and wake structure characteristics imposed by single seagrass blade surrogates. J. Ecohydraul. 1, 1–13 (2021).

    Google Scholar 

  • Lightbody, A. F. & Nepf, H. M. Prediction of velocity profiles and longitudinal dispersion in emergent salt marsh vegetation. Limnol. Oceangr 51, 218–228 (2006).

    Article 
    ADS 

    Google Scholar 

  • Kobayashi, N., Raichle, A. W. & Asano, T. Wave attenuation by vegetation. J. Waterway Port Coastal Ocean Eng. 119, 30–48 (1993).

    Article 

    Google Scholar 

  • Villanueva, R., Thom, M., Visscher, J. H., Paul, M. & Schlurmann, T. Wake length of an artificial seagrass meadow: A study of shelter and its feasibility for restoration. J. Ecohydraul. 1, 1–15 (2021).

    Google Scholar 

  • Paul, M. & Amos, C. L. Spatial and seasonal variation in wave attenuation over Zostera noltii. J. Geophys. Res. 116, C08019 (2011).

    ADS 

    Google Scholar 

  • Marjoribanks, T. I. & Paul, M. Modelling flow-induced reconfiguration of variable rigidity aquatic vegetation. J. Hydraul. Res. 1, 1–16 (2021).

    Google Scholar 

  • Schulze, D., Rupprecht, F., Nolte, S. & Jensen, K. Seasonal and spatial within-marsh differences of biophysical plant properties: Implications for wave attenuation capacity of salt marshes. Aquat. Sci. 81, 82 (2019).

    Article 

    Google Scholar 

  • Gillis, L. G. et al. Living on the edge: How traits of ecosystem engineers drive bio-physical interactions at coastal wetland edges. Adv. Water Resour. 166, 104257 (2022).

    Article 

    Google Scholar 

  • Zhao, H. & Chen, Q. Modeling attenuation of storm surge over deformable vegetation: methodology and verification. J. Eng. Mech. 140, 4014090 (2014).

    Google Scholar 

  • Möller, I. et al. Wave attenuation over coastal salt marshes under storm surge conditions. Nat. Geosci 7, 727–731 (2014).

    Article 
    ADS 

    Google Scholar 

  • Maza, M. et al. Large-scale 3-D experiments of wave and current interaction with real vegetation. Part 2. Experimental analysis. Coast. Eng. 106, 73–86 (2015).

    Article 

    Google Scholar 

  • Gray, A. J. & Mogg, R. J. Climate impacts on pioneer saltmarsh plants. Clim. Res. 18, 105–112 (2001).

    Article 

    Google Scholar 

  • Novaes, E., Kirst, M., Chiang, V., Winter-Sederoff, H. & Sederoff, R. Lignin and biomass: A negative correlation for wood formation and lignin content in trees. Plant Physiol. 154, 555–561 (2010).

    Article 
    CAS 

    Google Scholar 

  • Redfield, A. C. Development of a New England salt marsh. Ecol. Monogr. 42, 201–237 (1972).

    Article 

    Google Scholar 

  • Kirwan, M. L. et al. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 37, 1–10 (2010).

    Article 

    Google Scholar 

  • Idier, D., Dumas, F. & Muller, H. Tide-surge interaction in the English Channel. Nat. Hazards Earth Syst. Sci. 12, 3709–3718 (2012).

    Article 
    ADS 

    Google Scholar 

  • Weisse, R., von Storch, H., Niemeyer, H. D. & Knaack, H. Changing North Sea storm surge climate: An increasing hazard?. Ocean Coast. Manag. 68, 58–68 (2012).

    Article 

    Google Scholar 

  • Idier, D., Paris, F., Le Cozannet, G., Boulahya, F. & Dumas, F. Sea-level rise impacts on the tides of the European Shelf. Cont. Shelf Res. 137, 56–71 (2017).

    Article 
    ADS 

    Google Scholar 

  • Marcos, M., Calafat, F. M., Berihuete, Á. & Dangendorf, S. Long-term variations in global sea level extremes. J. Geophys. Res. Oceans 120, 8115–8134 (2015).

    Article 
    ADS 

    Google Scholar 

  • Dangendorf, S., Mudersbach, C., Jensen, J., Anette, G. & Heinrich, H. Seasonal to decadal forcing of high water level percentiles in the German Bight throughout the last century. Ocean Dyn. 46, 277 (2013).

    Google Scholar 

  • de Winter, R. C., Sterl, A. & Ruessink, B. G. Wind extremes in the North Sea Basin under climate change: An ensemble study of 12 CMIP5 GCMs. J. Geophys. Res. Atmos. 118, 1601–1612 (2013).

    Article 
    ADS 

    Google Scholar 

  • Arns, A. et al. Sea-level rise induced amplification of coastal protection design heights. Sci. Rep. 7, 40171 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pansch, A., Winde, V., Asmus, R. & Asmus, H. Tidal benthic mesocosms simulating future climate change scenarios in the field of marine ecology. Limnol. Oceanogr. Methods 14, 257–267 (2016).

    Article 

    Google Scholar 

  • Meehl, G. A. et al. Climate Change 2007: The Physical Science Basis: Summary for Policymakers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).

    Google Scholar 

  • Miler, O., Albayrak, I., Nikora, V. I. & O’Hare, M. T. Biomechanical properties of aquatic plants and their effects on plant–flow interactions in streams and rivers. Aquat. Sci. 74, 31–44 (2012).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Oldest DNA reveals 2-million-year-old ecosystem

    Decarbonization amid global crises