in

Seasonal peak photosynthesis is hindered by late canopy development in northern ecosystems

  • Piao, S., Friedlingstein, P., Ciais, P., Viovy, N. & Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 21, GB3018 (2007).

    Article 

    Google Scholar 

  • Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173 (2013).

    Article 

    Google Scholar 

  • Xia, J., Niu, S., Ciais, P. & Janssens, I. A. Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proc. Natl Acad. Sci. USA 112, 2788–2793 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Yang, J. et al. Divergent shifts in peak photosynthesis timing of temperate and alpine grasslands in China. Remote Sens. Environ. 233, 111395 (2019).

    Article 

    Google Scholar 

  • Huang, K., Xia, J., Wang, Y. & Ahlstrom, A. Enhanced peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evol. 2, 1897–1905 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Park, T., Chen, C. & Macias-Fauria, M. Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Glob. Change Biol. 25, 2382–2395 (2019).

    Article 

    Google Scholar 

  • Medlyn, B. E. Physiological basis of the light use efficiency model. Tree Physiol. 18, 167 (1998).

    Article 
    PubMed 

    Google Scholar 

  • Turner, D. P., Urbanski, S., Bremer, D., Wofsy, S. C. & Gregory, M. A cross-biome comparison of daily light use efficiency for gross primary production. Glob. Change Biol. 9, 383–395 (2003).

    Article 

    Google Scholar 

  • Monteith, J. L. Solar radiation and productivity in tropical ecosystems. Appl. Ecol. 9, 747–766 (1972).

    Article 

    Google Scholar 

  • Wang, H. et al. Towards a universal model for carbon dioxide uptake by plants. Nat. Plants 3, 734–741 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S. & Gentine, P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15, 5779–5800 (2018).

    Article 
    CAS 

    Google Scholar 

  • Frankenberg, C. et al. New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 38, L17706 (2011).

    Article 

    Google Scholar 

  • Yuan, H., Dai, Y., Xiao, Z., Ji, D. & Shangguan, W. Reprocessing the MODIS Leaf Area Index products for land surface and climate modelling. Remote Sens. Environ. 115, 1171–1187 (2011).

    Article 

    Google Scholar 

  • Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wang, X. et al. Globally consistent patterns of asynchrony in vegetation phenology derived from optical, microwave, and fluorescence satellite data. J. Geophys. Res. Biogeosci. 125, e2020JG005732 (2020).

    Article 

    Google Scholar 

  • Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhang, Y., Commane, R., Zhou, S., Williams, A. P. & Gentine, P. Light limitation regulates the response of autumn terrestrial carbon uptake to warming. Nat. Clim. Change 10, 739–743 (2020).

    Article 
    CAS 

    Google Scholar 

  • Yuan, W. et al. Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database. Agric. For. Meteorol. 192-193, 108–120 (2014).

    Article 

    Google Scholar 

  • Reich, P. B. et al. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. Proc. Natl Acad. Sci. USA 111, 13721–13726 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wright, I. J., Reich, P. B. & Westoby, M. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Reich, P. B., Oleksyn, J. & Wright, I. J. Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160, 207–212 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Chen, Y., Han, W., Tang, L., Tang, Z. & Fang, J. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography 36, 178–184 (2013).

    Article 

    Google Scholar 

  • Jiang, M., Caldararu, S., Zaehle, S., Ellsworth, D. S. & Medlyn, B. E. Towards a more physiological representation of vegetation phosphorus processes in land surface models. New Phytol. 222, 1223–1229 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Kergoat, L., Lafont, S., Arneth, A., Le Dantec, V. & Saugier, B. Nitrogen controls plant canopy light-use efficiency in temperate and boreal ecosystems. J. Geophys. Res. Biogeosci. 113, G04017 (2008).

    Article 

    Google Scholar 

  • Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).

    Article 
    CAS 

    Google Scholar 

  • Cleveland, C. C. et al. Patterns of new versus recycled primary production in the terrestrial biosphere. Proc. Natl Acad. Sci. USA 110, 12733–12737 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Veneklaas, E. J. et al. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol. 195, 306–320 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Janssens, I. A. & Luyssaert, S. Nitrogen’s carbon bonus. Nat. Geosci. 2, 318–319 (2009).

    Article 
    CAS 

    Google Scholar 

  • Luo, X. et al. Global variation in the fraction of leaf nitrogen allocated to photosynthesis. Nat. Commun. 12, 4866 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Lambers, H., Iii, F. & Pons, T. L. Plant Physiological Ecology (Springer, 2008).

  • Vose, J. M. et al. Factors influencing the amount and distribution of leaf area of pine stands. Ecol. Bull. 43, 102−114 (1994).

  • Carter, S. K., Saenz, D. & Rudolf, V. H. W. Shifts in phenological distributions reshape interaction potential in natural communities. Ecol. Lett. 21, 1143–1151 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).

    Article 

    Google Scholar 

  • Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Glob. Biogeochem. Cycles 19, GB1015 (2005).

    Article 

    Google Scholar 

  • Murray-Tortarolo, G. et al. Evaluation of land surface models in reproducing satellite-derived LAI over the high-latitude Northern Hemisphere. Part I: Uncoupled DGVMs. Remote Sens. 5, 4819–4838 (2013).

    Article 

    Google Scholar 

  • Lawrence, D. M. et al. The community land model version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).

    Article 

    Google Scholar 

  • Goll, D. S., Winkler, A. J. & Raddatz, T. Carbon–nitrogen interactions in idealized simulations with JSBACH (version 3.10). Geosci. Model Dev. 10, 2009–2030 (2017).

    Article 
    CAS 

    Google Scholar 

  • Goll, D. S., Vuichard, N. & Maignan, F. A representation of the phosphorus cycle for ORCHIDEE (revision 4520). Geosci. Model Dev. 10, 3745–3770 (2017).

    Article 
    CAS 

    Google Scholar 

  • Sun, Y., Goll, D. S. & Chang, J. Global evaluation of the nutrient-enabled version of the land surface model ORCHIDEE-CNP v1.2 (r5986). Geosci. Model Dev. 14, 1987–2010 (2021).

    Article 
    CAS 

    Google Scholar 

  • Clark, D. B., Mercado, L. M. & Sitch, S. The Joint UK Land Environment Simulator (JULES), model description—Part 2: Carbon fluxes and vegetation dynamics. Geosci. Model Dev. 4, 701–722 (2011).

    Article 

    Google Scholar 

  • Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).

    Article 
    CAS 

    Google Scholar 

  • Reyes-Fox, M. et al. Elevated CO2 further lengthens growing season under warming conditions. Nature 510, 259–262 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Guanter, L. et al. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl Acad. Sci. USA 111, E1327–E1333 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Sun, Y. et al. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 358, eaam5747 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Joiner, J. et al. The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange. Remote Sens. Environ. 152, 375–391 (2014).

    Article 

    Google Scholar 

  • Chu, D. et al. Long time-series NDVI reconstruction in cloud-prone regions via spatio-temporal tensor completion. Remote Sens. Environ. 264, 112632 (2021).

  • Joiner, J. et al. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmos. Meas. Tech. 6, 2803–2823 (2013).

    Article 

    Google Scholar 

  • Zhang, Y., Joiner, J., Gentine, P. & Zhou, S. Reduced solar-induced chlorophyll fluorescence from GOME-2 during Amazon drought caused by dataset artifacts. Glob. Change Biol. 24, 2229–2230 (2018).

    Article 

    Google Scholar 

  • Rodell, M., Houser, P. R. & Jambor, U. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 85, 381–394 (2004).

    Article 

    Google Scholar 

  • Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reichstein, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol. 11, 1424–1439 (2005).

    Article 

    Google Scholar 

  • LASSLOP, G. et al. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Glob. Change Biol. 16, 187–208 (2010).

    Article 

    Google Scholar 

  • Vautard, R., Yiou, P. & Ghil, M. Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Phys. D. 58, 95–126 (1992).

    Article 

    Google Scholar 

  • Zhou, S. et al. Dominant role of plant physiology in trend and variability of gross primary productivity in North America. Sci. Rep. 7, 41366 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Butler, E. E., Datta, A. & Flores-Moreno Mapping local and global variability in plant trait distributions. Proc. Natl Acad. Sci. USA 114, E10937–E10946 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci. 116, G04021 (2011).

    Article 

    Google Scholar 

  • Ellis, E. C., Antill, E. C. & Kreft, H. All is not loss: plant biodiversity in the anthropocene. PLoS ONE 7, e30535 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kier, G., Mutke, J., Dinerstein, E., Ricketts, T. H. & Barthlott, W. Global patterns of plant diversity and floristic knowledge. J. Biogeogr. 32, 1107–1116 (2005).

    Article 

    Google Scholar 

  • Boles, S. H. et al. Land cover characterization of temperate East Asia using multi-temporal VEGETATION sensor data. Remote Sens. Environ. 90, 477–489 (2004).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Oldest DNA reveals 2-million-year-old ecosystem

    Decarbonization amid global crises