in

RNA-Seq comparative study reveals molecular effectors linked to the resistance of Pinna nobilis to Haplosporidium pinnae parasite

  • Daszak, P. Emerging infectious diseases of wildlife-threats to biodiversity and human health. Science 287, 443–449 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: From evidence to a predictive framework. Science 1979(341), 514–519 (2013).

    Article 
    ADS 

    Google Scholar 

  • Kilpatrick, A. M., Briggs, C. J. & Daszak, P. The ecology and impact of chytridiomycosis: An emerging disease of amphibians. Trends Ecol. Evol. 25, 109–118 (2010).

    Article 

    Google Scholar 

  • Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 1979(323), 227–227 (2009).

    Article 

    Google Scholar 

  • Wilfert, L. et al. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 1979(351), 594–597 (2016).

    Article 
    ADS 

    Google Scholar 

  • Garamszegi, L. Z. Climate change increases the risk of malaria in birds. Glob. Change Biol. 17, 1751–1759 (2011).

    Article 
    ADS 

    Google Scholar 

  • Zamora-Vilchis, I., Williams, S. E. & Johnson, C. N. Environmental temperature affects prevalence of blood parasites of birds on an elevation gradient: Implications for disease in a warming climate. PLoS ONE 7, e39208 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Harvell, D., Altizer, S., Cattadori, I. M., Harrington, L. & Weil, E. Climate change and wildlife diseases: When does the host matter the most?. Ecology 90, 912–920 (2009).

    Article 

    Google Scholar 

  • Burge, C. A. et al. Climate change influences on marine infectious diseases: Implications for management and society. Ann. Rev. Mar. Sci. 6, 249–277 (2014).

    Article 

    Google Scholar 

  • Tracy, A. M., Pielmeier, M. L., Yoshioka, R. M., Heron, S. F. & Harvell, C. D. Increases and decreases in marine disease reports in an era of global change. Proc. R. Soc. B Biol. Sci. 286, 20191718 (2019).

    Article 

    Google Scholar 

  • Lejeusne, C., Chevaldonné, P., Pergent-Martini, C., Boudouresque, C. F. & Pérez, T. Climate change effects on a miniature ocean: The highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 25, 250–260 (2010).

    Article 

    Google Scholar 

  • Basso, L. et al. The Pen Shell, Pinna nobilis: A review of population status and recommended research priorities in the Mediterranean Sea. Adv. Mar. Biol. 71, 109–160 (2015).

    Article 

    Google Scholar 

  • Catanese, G. et al. Haplosporidium pinnae sp. nov., a haplosporidan parasite associated with mass mortalities of the fan mussel, Pinna nobilis, in the Western Mediterranean Sea. J. Invertebr. Pathol. 157, 9–24 (2018).

    Article 
    CAS 

    Google Scholar 

  • Vázquez-Luis, M. et al. S.O.S. Pinna nobilis: A mass mortality event in western Mediterranean sea. Front. Mar. Sci. 4, 220 (2017).

    Article 

    Google Scholar 

  • García-March, J. R. et al. Can we save a marine species affected by a highly infective, highly lethal, waterborne disease from extinction?. Biol. Conserv. 243, 108498 (2020).

    Article 

    Google Scholar 

  • Prado, P. et al. Pinna nobilis in suboptimal environments are more tolerant to disease but more vulnerable to severe weather phenomena. Mar. Environ. Res. 163, 105220 (2021).

    Article 
    CAS 

    Google Scholar 

  • Cabanellas-Reboredo, M. et al. Tracking a mass mortality outbreak of pen shell Pinna nobilis populations: A collaborative effort of scientists and citizens. Sci. Rep. 9, 13355 (2019).

    Article 
    ADS 

    Google Scholar 

  • Kersting, D. K. et al. Recruitment disruption and the role of unaffected populations for potential recovery after the Pinna nobilis mass mortality event. Front. Mar. Sci. 7, 1–11 (2020).

    Article 
    ADS 

    Google Scholar 

  • Box, A. et al. Reduced antioxidant response of the fan mussel Pinna nobilis related to the presence of haplosporidium pinnae. Pathogens 9, 1–14 (2020).

    Article 

    Google Scholar 

  • Peyran, C., Morage, T., Nebot-Colomer, E., Iwankow, G. & Planes, S. Unexpected residual habitats raise hope for the survival of the fan mussel Pinna nobilis along the Occitan coast (Northwest Mediterranean Sea). Endanger Species Res. 48, 123–137 (2022).

    Article 

    Google Scholar 

  • Rosa, R. D. et al. A hemocyte gene expression signature correlated with predictive capacity of oysters to survive Vibrio infections. BMC Genomics 13, 1–12 (2012).

    Article 

    Google Scholar 

  • van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    Article 

    Google Scholar 

  • Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness. In Methods in Molecular Biology 227–245 https://doi.org/10.1007/978-1-4939-9173-0_14 (2019).

  • Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J. M. & Kelly, S. TransRate: Reference-free quality assessment of de novo transcriptome assemblies. Genome Res. 26, 1134–1144 (2016).

    Article 
    CAS 

    Google Scholar 

  • Guo, X. & Ford, S. E. Infectious diseases of marine mollusks and host responses as revealed by genomic tools. Philos. Trans. R. Soc. B Biol. Sci. https://doi.org/10.1098/rstb.2015.0206 (2016).

    Article 

    Google Scholar 

  • Pauletto, M. et al. Deep transcriptome sequencing of Pecten maximus hemocytes: A genomic resource for bivalve immunology. Fish Shellfish Immunol. 37, 154–165 (2014).

    Article 
    CAS 

    Google Scholar 

  • Caurcel, C. et al. MolluscDB: A genome and transcriptome database for molluscs. Philos. Trans. R. Soc. Lond. B Biol. Sci. 376, 20200157 (2021).

    Article 
    CAS 

    Google Scholar 

  • de Oliveira, A. L. et al. Comparative transcriptomics enlarges the toolkit of known developmental genes in mollusks. BMC Genomics 17, 1–23 (2016).

    Article 

    Google Scholar 

  • Richardson, M. F. & De Sherman, C. D. H. De novo assembly and characterization of the invasive Northern Pacific Seastar transcriptome. PLoS ONE 10, e0142003 (2015).

    Article 

    Google Scholar 

  • Zhang, D., Wang, F., Dong, S. & Lu, Y. D. De novo assembly and transcriptome analysis of osmoregulation in Litopenaeus vannamei under three cultivated conditions with different salinities. Gene 578, 185–193 (2016).

    Article 
    CAS 

    Google Scholar 

  • Werner, G. D. A., Gemmell, P., Grosser, S., Hamer, R. & Shimeld, S. M. Analysis of a deep transcriptome from the mantle tissue of Patella vulgata Linnaeus (Mollusca: Gastropoda: Patellidae) reveals candidate biomineralising genes. Mar. Biotechnol. 15, 230–243 (2013).

    Article 
    CAS 

    Google Scholar 

  • Ding, J. et al. Transcriptome sequencing and characterization of Japanese scallop Patinopecten yessoensis from different shell color lines. PLoS ONE 10, e0116406 (2015).

    Article 

    Google Scholar 

  • Harney, E. et al. De novo assembly and annotation of the European abalone Haliotis tuberculata transcriptome. Mar Genomics 28, 11–16 (2016).

    Article 

    Google Scholar 

  • Khalturin, K., Hemmrich, G., Fraune, S., Augustin, R. & Bosch, T. C. G. More than just orphans: Are taxonomically-restricted genes important in evolution?. Trends Genet. 25, 404–413. https://doi.org/10.1016/j.tig.2009.07.006 (2009).

    Article 
    CAS 

    Google Scholar 

  • Gibson, A. K., Smith, Z., Fuqua, C., Clay, K. & Colbourne, J. K. Why so many unknown genes? Partitioning orphans from a representative transcriptome of the lone star tick Amblyomma americanum. BMC Genomics 14, 135 (2013).

    Article 
    CAS 

    Google Scholar 

  • Albertin, C. B. et al. The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature 524, 220–224 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Vogeler, S., Galloway, T. S., Lyons, B. P. & Bean, T. P. The nuclear receptor gene family in the Pacific oyster, Crassostrea gigas, contains a novel subfamily group. BMC Genomics 15, 369 (2014).

    Article 

    Google Scholar 

  • Allam, B. & Raftos, D. Immune responses to infectious diseases in bivalves. J. Invertebr. Pathol. 131, 121–136. https://doi.org/10.1016/j.jip.2015.05.005 (2015).

    Article 
    CAS 

    Google Scholar 

  • Allam, B. & Pales Espinosa, E. Bivalve immunity and response to infections: Are we looking at the right place?. Fish Shellfish Immunol. 53, 4–12. https://doi.org/10.1016/j.fsi.2016.03.037 (2016).

    Article 
    CAS 

    Google Scholar 

  • Qiu, L., Song, L., Xu, W., Ni, D. & Yu, Y. Molecular cloning and expression of a Toll receptor gene homologue from Zhikong Scallop, Chlamys farreri. Fish Shellfish Immunol. 22, 451–466 (2007).

    Article 
    CAS 

    Google Scholar 

  • Zhang, L., Li, L., Zhu, Y., Zhang, G. & Guo, X. Transcriptome analysis reveals a rich gene set related to innate immunity in the eastern oyster (Crassostrea virginica). Mar. Biotechnol. 16, 17–33 (2014).

    Article 

    Google Scholar 

  • Moreira, R. et al. Transcriptomics of in vitro immune-stimulated hemocytes from the Manila clam Ruditapes philippinarum using high-throughput sequencing. PLoS ONE 7, e35009 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Toubiana, M. et al. Toll-like receptors and MyD88 adaptors in Mytilus: Complete cds and gene expression levels. Dev. Comp. Immunol. 40, 158–166 (2013).

    Article 
    CAS 

    Google Scholar 

  • He, Y. et al. Transcriptome analysis reveals strong and complex antiviral response in a mollusc. Fish Shellfish Immunol. 46, 131–144 (2015).

    Article 
    CAS 

    Google Scholar 

  • Zhang, L. et al. Massive expansion and functional divergence of innate immune genes in a protostome. Sci. Rep. 5, 8693 (2015).

    Article 
    CAS 

    Google Scholar 

  • Casadevall, A. & Pirofski, L. A. Host–pathogen interactions: The attributes of virulence. J. Infect. Dis. 184, 337–344. https://doi.org/10.1086/322044 (2001).

    Article 
    CAS 

    Google Scholar 

  • Jones, B., Pascopella, L. & Falkow, S. Entry of microbes into the host: Using M cells to break the mucosal barrier. Curr. Opin. Immunol. 7, 474–478 (1995).

    Article 
    CAS 

    Google Scholar 

  • Liévin-Le Moal, V. & Servin, A. L. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: Mucins, antimicrobial peptides, and microbiota. Clin. Microbiol. Rev. 19, 315–337. https://doi.org/10.1128/CMR.19.2.315-337.2006 (2006).

    Article 
    CAS 

    Google Scholar 

  • Trigos, S., Vicente, N., Prado, P. & Espinós, F. J. Adult spawning and early larval development of the endangered bivalve Pinna nobilis. Aquaculture 483, 102–110 (2018).

    Article 

    Google Scholar 

  • Vázquez-Luis, M., Nebot-Colomer, E., Deudero, S., Planes, S. & Boissin, E. Natural hybridization between pen shell species: Pinna rudis and the critically endangered Pinna nobilis may explain parasite resistance in P. nobilis. Mol. Biol. Rep. https://doi.org/10.1007/s11033-020-06063-5 (2021).

    Article 

    Google Scholar 

  • Katsares, V., Tsiora, A., Galinou-Mitsoudi, S. & Imsiridou, A. Genetic structure of the endangered species Pinna nobilis (Mollusca: Bivalvia) inferred from mtDNA sequences. Biologia 63, 412–417 (2008).

    Article 
    CAS 

    Google Scholar 

  • Gonzalez-Wanguemert, M. et al. Highly polymorphic microsatellite markers for the Mediterranean endemic fan mussel Pinna nobilis. Mediterr. Mar. Sci. 16, 31 (2014).

    Article 

    Google Scholar 

  • Peyran, C., Planes, S., Tolou, N., Iwankow, G. & Boissin, E. Development of 26 highly polymorphic microsatellite markers for the highly endangered fan mussel Pinna nobilis and cross-species amplification. Mol. Biol. Rep. 47, 2551–2559 (2020).

    Article 
    CAS 

    Google Scholar 

  • Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539 (2012).

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Oldest DNA reveals 2-million-year-old ecosystem

    Decarbonization amid global crises