Gao, A. L. & Zhou, K. Y. Growth and reproduction of three populations of finless porpoise, Neophocaena phocaenoides, in Chinese waters. Aquat Mamm 19, 3–12 (1993).
Jefferson, T. A. Preliminary analysis of geographic variation in cranial morphometrics of the finless porpoise (Neophocaena phocaenoides). Raffles Bull Zool 10, 3–14 (2002).
Pilleri, G. & Gihr, M. Contribution to the knowledge of the cetaceans of Pakistan with particular reference to the genera Neomeris, Sousa, Delphinus and Tursiops and description of a new Chinese porpoise (Neomeris asiaeorientalis). Investig Cetacea 4, 107–162 (1972).
Pilleri, G. & Gihr, M. On the taxonomy and ecology of the finless black porpoise, Neophocaena (Cetacea, Delphinidae). Mammalia 39, 657–673 (1975).
Google Scholar
Wang, P. L. The morphological characters and the problem of subspecies identifications of the finless porpoise. Fish Sci 11, 4–8 (1992).
Wang, P. L. On the taxonomy of the finless porpoise in China. Fish Sci 6, 10–14 (1992).
Gao, A. L. & Zhou, K. Y. Geographical variation of external measurements and three subspecies of Neophocaena phocaenoides in Chinese waters. Acta Theriol Sin 15, 81–92 (1995).
Wang, J. Y., Frasier, T. R., Yang, S. C. & White, B. N. Detecting recent speciation events: the case of the finless porpoise (genus Neophocaena). Heredity 101, 145–155 (2008).
Google Scholar
Jefferson, T. A. & Wang, J. Y. Revision of the taxonomy of finless porpoises (genus Neophocaena): the existence of two species. J Mar Anim Ecol 4, 3–16 (2011).
Zhou, X. M. et al. Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater. Nat Commun 9, 1276 (2018).
Google Scholar
Wang, D., Turvey, S.T., Zhao, X. & Mei, Z. Neophocaena asiaeorientalis ssp. asiaeorientalis. The IUCN Red List of Threatened Species https://www.iucnredlist.org/species/43205774/45893487 (2013).
Wang, J. Y. & Reeves, R. Neophocaena Asiaeorientalis. The IUCN Red List of Threatened Species https://www.iucnredlist.org/species/41754/50381766 (2017).
Kasuya, T. Japanese whaling and other cetacean fisheries. Environ Sci Pollut Res Int 14, 39–48 (2007).
Google Scholar
Yoshida, H., Shirakihara, K., Kishino, H. & Shirakihara, M. A population size estimate of the finless porpoise, Neophocaena phocaenoides, from aerial sighting surveys in Ariake Sound and Tachibana Bay, Japan. Popul Ecol 39, 239–247 (1997).
Google Scholar
Amano, M., Nakahara, F., Hayano, A. & Shirakihara, K. Abundance estimate of finless porpoises off the Pacific coast of eastern Japan based on aerial surveys. Mamm Study 28, 103–110 (2003).
Google Scholar
Shirakihara, K., Shirakihara, M. & Yamamoto, Y. Distribution and abundance of finless porpoise in the Inland Sea of Japan. Mar Biol 150, 1025–1032 (2007).
Google Scholar
Zuo, T., Sun, J. Q., Shi, Y. Q. & Wang, J. Primary survey of finless porpoise population in the Bohai Sea. Acta Theriol Sin 38, 551–561 (2018).
Ruan, R., Guo, A. H., Hao, Y. J., Zheng, J. S. & Wang, D. De novo assembly and characterization of narrow-ridged finless porpoise renal transcriptome and identification of candidate genes involved in osmoregulation. Int J Mol Sci 16, 2220–2238 (2015).
Google Scholar
Li, S. H. et al. Echolocation click sounds from wild inshore finless porpoise (Neophocaena phocaenoides sunameri) with comparisons to the sonar of riverine N. p. asiaeorientalis. J Acoust Soc Am 121, 3938–3946 (2007).
Google Scholar
Dong, J. H., Wang, G. J. & Xiao, Z. Z. Migration and population difference of the finless porpoise in China. Mar Sci 5, 42–45 (1993).
Lu, Z. C. et al. Analysis of the diet of finless porpoise (Neophocaena asiaeorientalis sunameri) based on prey morphological characters and DNA barcoding. Conserv Genet Resour 8, 523–531 (2016).
Google Scholar
Chen, B. et al. Finless porpoises (Neophocaena asiaeorientalis) in the East China Sea: insights into feeding habits using morphological, molecular, and stable isotopic techniques. Can J Fish Aquat Sci 74, 1628–1645 (2017).
Google Scholar
Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).
Google Scholar
Chen, Y. X. et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 7, 1–6 (2018).
Google Scholar
Chikhi, R. & Medvedev, P. Informed and automated k-mer size selection for genome assembly. Bioinformatics 30, 31–37 (2014).
Google Scholar
Chin, C. S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10, 563–569 (2013).
Google Scholar
Cheng, H. Y., Concepcion, G. T., Feng, X. W., Zhang, H. W. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods 18, 170–175 (2021).
Google Scholar
Roach, M. J., Schmidt, S. A. & Borneman, A. R. Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinformatics 19, 1–10 (2018).
Google Scholar
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
Google Scholar
Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst 3, 95–98 (2016).
Google Scholar
Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).
Google Scholar
Xiong, Y., Brandley, M. C., Xu, S. X., Zhou, K. Y. & Yang, G. Seven new dolphin mitochondrial genomes and a time-calibrated phylogeny of whales. BMC Evol Biol 9, 1–13 (2009).
Google Scholar
Alonge, M. et al. RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biol 20, 1–17 (2019).
Google Scholar
Mayer, A., Lahr, G., Swaab, D. F., Pilgrim, C. & Reisert, I. The Y-chromosomal genes SRY and ZFY are transcribed in adult human brain. Neurogenetics 1, 281–288 (1998).
Google Scholar
Sinclair, A. H. et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240–244 (1990).
Google Scholar
Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P. & Lovell-Badge, R. Male development of chromosomally female mice transgenic for Sry. Nature 351, 117–121 (1991).
Google Scholar
Salo, P. et al. Molecular mapping of the putative gonadoblastoma locus on the Y chromosome. Genes Chromosomes Cancer 14, 210–214 (1995).
Google Scholar
Tsuchiya, K., Reijo, R., Page, D. C. & Disteche, C. M. Gonadoblastoma: molecular definition of the susceptibility region on the Y chromosome. Am J Hum Genet 57, 1400–1407 (1995).
Gegenschatz-Schmid, K., Verkauskas, G., Stadler, M. B. & Hadziselimovic, F. Genes located in Y-chromosomal regions important for male fertility show altered transcript levels in cryptorchidism and respond to curative hormone treatment. Basic Clin Androl 29, 1–8 (2019).
Google Scholar
Chen, N. Using Repeat Masker to identify repetitive elements in genomic sequences. Curr protoc Bioinf 5, 4–10 (2004).
Google Scholar
Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35, W265–W268 (2007).
Google Scholar
Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).
Google Scholar
Bao, W. D., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6, 1–6 (2015).
Google Scholar
Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27, 573–580 (1999).
Google Scholar
Liu, W. et al. Blood Transcriptome Analysis Reveals Gene Expression Differences between Yangtze Finless Porpoises from Two Habitats: Natural and Ex Situ Protected Waters. Fishes 7, 96 (2022).
Google Scholar
Yin, D. H. et al. Integrated analysis of blood mRNAs and microRNAs reveals immune changes with age in the Yangtze finless porpoise (Neophocaena asiaeorientalis). Comp Biochem Physiol B Biochem Mol Biol 256, 110635 (2021).
Google Scholar
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37, 907–915 (2019).
Google Scholar
Kovaka, S. et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol 20, 1–13 (2019).
Google Scholar
Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637–644 (2008).
Google Scholar
Keane, M. et al. Insights into the evolution of longevity from the bowhead whale genome. Cell Rep 10, 112–122 (2015).
Google Scholar
Yim, H. S. et al. Minke whale genome and aquatic adaptation in cetaceans. Nat Genet 46, 88–92 (2014).
Google Scholar
Jones, S. J. et al. The genome of the beluga whale (Delphinapterus leucas). Genes 8, 378 (2017).
Google Scholar
Zhou, X. M. et al. Baiji genomes reveal low genetic variability and new insights into secondary aquatic adaptations. Nat Commun 4, 1–6 (2013).
Google Scholar
Foote, A. D. et al. Convergent evolution of the genomes of marine mammals. Nat Genet 47, 272–275 (2015).
Google Scholar
Keilwagen, J., Hartung, F. & Grau, J. GeMoMa: homology-based gene prediction utilizing intron position conservation and RNA-seq data. Methods Mol Biol 1962, 161–177 (2019).
Google Scholar
Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44, D457–D462 (2016).
Google Scholar
Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 28, 45–48 (2000).
Google Scholar
Korf, I. Gene finding in novel genomes. BMC bioinformatics 5, 1–9 (2004).
Google Scholar
Finn, R. D. et al. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res 45, D190–D199 (2017).
Google Scholar
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J Mol Biol 215, 403–410 (1990).
Google Scholar
Mulder, N. J. & Apweiler, R. InterPro and InterProScan: tools for protein sequence classification and comparison. Methods Mol Biol 396, 59–70 (2007).
Google Scholar
Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat Genet 25, 25–29 (2000).
Google Scholar
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR21047154 (2022).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR20760935 (2022).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR20760936 (2022).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR20997931 (2022).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR20997932 (2022).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR20997933 (2022).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR20997934 (2022).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR20997935 (2022).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP389529 (2022).
Yin, D. H. et al. Neophocaena asiaeorientalis sunameri isolate NAS202207, whole genome shotgun sequencing project. GenBank https://identifiers.org/insdc.gca:GCA_026225855.1 (2022).
Yin, D. H. et al. Gapless genome assembly of East Asian finless porpoise, Neophocaena asiaeorientalis sunameri. figshare https://doi.org/10.6084/m9.figshare.20381274.v2 (2022).
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
Google Scholar
Marçais, G. et al. MUMmer4: A fast and versatile genome alignment system. PLoS Comput Biol 14, e1005944 (2018).
Google Scholar
Source: Ecology - nature.com