in

Half-millennium evidence suggests that extinction debts of global vertebrates started in the Second Industrial Revolution

  • Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. Habitat destruction and the extinction debt. Nature 371, 65–66 (1994).

    Article 

    Google Scholar 

  • Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fonseca, C. R. et al. Conservation biology: four decades of problem- and solution-based research. Perspect. Ecol. Conserv. 19, 121–130 (2021).

    Google Scholar 

  • Smits, P. & Finnegan, S. How predictable is extinction? Forecasting species survival at million-year timescales. Philos. Trans. R. Soc. B Biol. Sci. 374, 20190392 (2019).

    Article 

    Google Scholar 

  • Hanski, I. & Ovaskainen, O. Extinction debt at extinction threshold. Conserv. Biol. 16, 666–673 (2002).

    Article 

    Google Scholar 

  • Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Ridding, L. E. et al. Inconsistent detection of extinction debts using different methods. Ecography 44, 33–43 (2021).

    Article 

    Google Scholar 

  • Berglund, H. & Jonsson, B. G. Verifying an extinction debt among lichens and fungi in northern Swedish boreal forests. Conserv. Biol. 19, 338–348 (2005).

    Article 

    Google Scholar 

  • Jones, I. L., Bunnefeld, N., Jump, A. S., Peres, C. A. & Dent, D. H. Extinction debt on reservoir land-bridge islands. Biol. Conserv. 199, 75–83 (2016).

    Article 

    Google Scholar 

  • Triantis, K. et al. Extinction debt on oceanic islands. Ecography 33, 285–294 (2010).

    Google Scholar 

  • Wearn, O. R., Reuman, D. C. & Ewers, R. M. Extinction debt and windows of conservation opportunity in the Brazilian Amazon. Science 337, 228–232 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pan, Y. et al. Spatial and temporal scales of landscape structure affect the biodiversity-landscape relationship across ecologically distinct species groups. Landsc. Ecol. 37, 2311–2325 (2022).

    Article 

    Google Scholar 

  • Soga, M. & Koike, S. Mapping the potential extinction debt of butterflies in a modern city: Implications for conservation priorities in urban landscapes. Anim. Conserv. 16, 1–11 (2013).

    Article 

    Google Scholar 

  • Knapp, S., Winter, M. & Klotz, S. Increasing species richness but decreasing phylogenetic richness and divergence over a 320-year period of urbanization. J. Appl. Ecol. 54, 1152–1160 (2017).

    Article 

    Google Scholar 

  • McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the anthropocene. Trends Ecol. Evol. 30, 104–113 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Chen, Y. & Peng, S. Evidence and mapping of extinction debts for global forest-dwelling reptiles, amphibians and mammals. Sci. Rep. 7, 1–10 (2017).

    Google Scholar 

  • Krauss, J. et al. Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol. Lett. 13, 597–605 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cowlishaw, G. Predicting the pattern of decline of African primate diversity: An extinction debt from historical deforestation. Conserv. Biol. 13, 1183–1193 (1999).

    Article 

    Google Scholar 

  • Figueiredo, L., Krauss, J., Steffan-Dewenter, I. & Sarmento Cabral, J. Understanding extinction debts: spatio–temporal scales, mechanisms and a roadmap for future research. Ecography 42, 1973–1990 (2019).

    Article 

    Google Scholar 

  • Aerts, R. & Honnay, O. Forest restoration, biodiversity and ecosystem functioning. BMC Ecol. 11, 1–21 (2011).

    Article 

    Google Scholar 

  • Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • IUCN. The IUCN Red List of Threatened Species, Version 2019-1. https://www.iucnredlist.org. Downloaded on 23 February 2022. (2019).

  • Brown, J. L. et al. Spatial biodiversity patterns of Madagascar’s amphibians and reptiles. PLoS ONE 11, e0144076 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Powney, G. D., Grenyer, R., Orme, C. D. L., Owens, I. P. F. & Meiri, S. Hot, dry and different: Australian lizard richness is unlike that of mammals, amphibians and birds. Glob. Ecol. Biogeogr. 19, 386–396 (2010).

    Article 

    Google Scholar 

  • Pianka, E. R. Desert lizard diversity: additional comments and some data. Am. Nat. 134, 344–364 (1989).

    Article 

    Google Scholar 

  • Chen, Y. H. Combining the species-area-habitat relationship and environmental cluster analysis to set conservation priorities: A study in the Zhoushan Archipelago, China. Conserv. Biol. 23, 537–545 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Ricklefs, R. E. & Lovette, I. J. The roles of island area per se and habitat diversity in the species-area relationships of four Lesser Antillean faunal groups. J. Anim. Ecol. 68, 1142–1160 (1999).

    Article 

    Google Scholar 

  • Souza, F. L., Martins, F. I. & Raizer, J. Habitat heterogeneity and anuran community of an agroecosystem in the Pantanal of Brazil. Phyllomedusa 13, 41–50 (2014).

    Article 

    Google Scholar 

  • Kelt, D. A. & Van Vuren, D. H. The ecology and macroecology of mammalian home range area. Am. Nat. 157, 637–645 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McNab, B. K. Bioenergetics and the determination of home range size. Am. Nat. 97, 133–140 (1963).

    Article 

    Google Scholar 

  • Powell, R. A. & Mitchell, M. S. What is a home range? J. Mammal. 93, 948–958 (2012).

    Article 

    Google Scholar 

  • Hoffmann, S., Irl, S. D. H. & Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun. 10, 1–10 (2019).

    Article 

    Google Scholar 

  • Giam, X. et al. Reservoirs of richness: least disturbed tropical forests are centres of undescribed species diversity. Proc. R. Soc. B 279, 67–76 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Pillay, R. et al. Tropical forests are home to over half of the world’s vertebrate species. Front. Ecol. Environ. 20, 10–15 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Li, H. et al. Large numbers of vertebrates began rapid population decline in the late 19th century. Proc. Natl Acad. Sci. USA 113, 14079–14084 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pringle, R. M. Upgrading protected areas to conserve wild biodiversity. Nature 546, 91–99 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Forzieri, G., Dakos, V., McDowell, N. G., Ramdane, A. & Cescatti, A. Emerging signals of declining forest resilience under climate change. Nature 608, 534–539 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Diamond, J. M. Biogeographic kinetics: estimation of relaxation times for Avifaunas of southwest Pacific islands. Proc. Natl Acad. Sci. USA 69, 3199–3203 (1972).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jackson, S. T. & Sax, D. F. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25, 153–160 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Foley, J. A. et al. Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 5, 25–32 (2007).

    Article 

    Google Scholar 

  • Asamoah, E. F., Beaumont, L. J. & Maina, J. M. Climate and land-use changes reduce the benefits of terrestrial protected areas. Nat. Clim. Chang. 11, 1105–1110 (2021).

    Article 

    Google Scholar 

  • Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).

    Article 

    Google Scholar 

  • Peng, S. et al. Sensitivity of land use change emission estimates to historical land use and land cover mapping. Glob. Biogeochem. Cycles 31, 626–643 (2017).

    Article 
    CAS 

    Google Scholar 

  • Jain, A. K., Meiyappan, P., Song, Y. & House, J. I. CO2 emissions from land-use change affected more by nitrogen cycle, than by the choice of land-cover data. Glob. Chang. Biol. 19, 2893–2906 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Poulter, B. et al. Plant functional type classification for earth system models: results from the European Space Agency’s Land Cover Climate Change Initiative. Geosci. Model Dev. 8, 2315–2328 (2015).

    Article 

    Google Scholar 

  • Pongratz, J., Reick, C., Raddatz, T. & Claussen, M. A reconstruction of global agricultural areas and land cover for the last millennium. Global Biogeochem. Cycles 22, (2008).

  • Dietz, F. C. The industrial revolution. In the Hands of a Child (1970).

  • Gütschow, J., Jeffery, L. & Gieseke, R. The PRIMAP-hist national historical emissions time series (1850-2016). V. 2.0. GFZ Data Services (2019).

  • Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Protected Planet: The World Database on Protected Areas (UNEP-WCMC and IUCN, accessed 9 January 2022); www.protectedplanet.net.

  • Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing Version 4.0.2 (2020).


  • Source: Ecology - nature.com

    Microparticles could help prevent vitamin A deficiency

    Energy, war, and the crisis in Ukraine