in

Seasonal variation in daily activity patterns of snow leopards and their prey

  • Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).

    Article 

    Google Scholar 

  • Ordiz, A., Stoen, O. G., Delibes, M. & Swenson, J. E. Predators or prey? Spatio-temporal discrimination of human-derived risk by brown bears. Oecologia 166, 59–67 (2011).

    Article 
    ADS 

    Google Scholar 

  • Glass, T. W., Breed, G. A., Robards, M. D., Williams, C. T. & Kielland, K. Trade-off between predation risk and behavioural thermoregulation drives resting behaviour in a cold-adapted mesocarnivore. Anim. Behav. 175, 163–174 (2021).

    Article 

    Google Scholar 

  • Daan, S. & Aschoff, J. Circadian rhytms of locomotor activity in captive birds and mammals: Their variation with seasons and latitude. Oecologia 18, 269–316 (1975).

    Article 
    ADS 

    Google Scholar 

  • Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).

    Article 

    Google Scholar 

  • Garcia, R. A., Cabeza, M., Rahbek, C. & Araujo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579 (2014).

    Article 

    Google Scholar 

  • Curio, E. The Ethology of Predation (Springer-Verlag, 1976).

    Book 

    Google Scholar 

  • Linkie, M. & Ridout, M. S. Assessing tiger-prey interactions in Sumatran rainforests. J. Zool. 284, 224–229 (2011).

    Article 

    Google Scholar 

  • Heurich, M. et al. Activity patterns of Eurasian lynx are modulated by light regime and individual traits over a wide latitudinal range. PLoS ONE 9, e114143 (2014).

    Article 
    ADS 

    Google Scholar 

  • Harmsen, B. J., Foster, R. J., Silver, S. C., Ostro, L. E. T. & Doncaster, C. P. Jaguar and puma activity patterns in relation to their main prey. Mamm. Biol. 76, 320–324 (2011).

    Article 

    Google Scholar 

  • Foster, V. C. et al. Jaguar and puma activity patterns and predator-prey interactions in four Brazilian biomes. Biotropica 45, 373–379 (2013).

    Article 

    Google Scholar 

  • Theuerkauf, J. et al. Daily patterns and duration of wolf activity in the Bialowieza forest, Poland. J. Mammal. 84, 243–253 (2003).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1644/1545-1542(2003)0842.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1644%2F1545-1542%282003%29084%3C0243%3ADPADOW%3E2.0.CO%3B2″ aria-label=”Article reference 12″ data-doi=”10.1644/1545-1542(2003)0842.0.CO;2″>Article 

    Google Scholar 

  • Hebblewhite, M., Merrill, E. H. & McDonald, T. L. Spatial decomposition of predation risk usign resource selection functions: An example in a wolf-elk predator-prey system. Oikos 111, 101–111 (2005).

    Article 

    Google Scholar 

  • Balme, G., Hunter, L. & Slotow, R. Feeding habitat selection by hunting leopards Panthera pardus in a woodland Savanna: Prey catchability versus abundance. Anim. Behav. 74, 589–598 (2007).

    Article 

    Google Scholar 

  • Smith, J. A. et al. Where and when to hunt? Decomposing predation success of an ambush carnivore. Ecology 101, e03172 (2020).

    Article 

    Google Scholar 

  • Hopcraft, J. G. C., Sinclair, A. R. E. & Packer, C. Planning for success: Serengeti lions seek prey accessibility rather than abundance. J. Anim. Ecol. 74, 559–566 (2005).

    Article 

    Google Scholar 

  • Theuerkauf, J. What drives wolves: Fear or hunger? Humans, diet, climate and wolf activity patterns. Ethology 115, 649–657 (2009).

    Article 

    Google Scholar 

  • Funston, P. J., Mills, M. G. & Biggs, H. C. Factors affecting the hunting success of male and female lions in the Kruger National Park. J. Zool. 253, 419–431 (2001).

    Article 

    Google Scholar 

  • Schaller, G. The Serengeti lion (The University of Chicago Press, IL, 1972).

    Google Scholar 

  • Bailey, T. N. The African Leopard, Ecology and Behaviour of a Solitary Felid (The Blackburn Press, 1993).

    Book 

    Google Scholar 

  • Jenny, D. & Zuberbühler, K. Hunting behaviour in West African forest leopards. Afr. J. Ecol. 43, 197–200 (2005).

    Article 

    Google Scholar 

  • Packer, C., Swanson, A., Ikanda, D. & Kushnir, H. Fear of darkness, the full moon and the nocturnal ecology of African lions. PLoS ONE 6, e22285 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Palmer, M. S., Fieberg, J., Swanson, A., Kosmala, M. & Packer, C. A “dynamic” landscape of fear: Prey responses to spatiotemporal variations in predation risk across the lunar cycle. Ecol. Letters 20, 1364–1373 (2017).

    Article 
    CAS 

    Google Scholar 

  • Steinmetz, R., Seuaturien, N. & Chutipong, W. Tigers, leopards, and dholes in a half-empty forest: Assessing species interactions in a guild of threatened carnivores. Biol. Cons. 163, 68–78 (2013).

    Article 

    Google Scholar 

  • Carter, N., Jasny, M., Gurung, B. & Liu, J. Impacts of people and tigers on leopard spatiotemporal activity patterns in a global biodiversity hotspot. Global Ecol. Conserv. 3, 149–162 (2015).

    Article 

    Google Scholar 

  • George, S. L. & Crooks, K. R. Recreation and large mammal activity in an urban nature reserve. Biol. Cons. 133, 107–117 (2006).

    Article 

    Google Scholar 

  • Beltrán, J. F. & Delibes, M. Environmental determinants of circadian activity of free-ranging Iberian lynxes. J. Mammal. 75, 382–393 (1994).

    Article 

    Google Scholar 

  • McNab, B. K. The standard energetics of mammalian carnivores: Felidae and Hyaenidae. Sikes Can. J. Zool. 78, 2227–2239 (2000).

    Article 

    Google Scholar 

  • Mishra, C. et al. Increasing risks for emerging infectious diseases within a rapidly changing High Asia. Ambio 51, 494–507 (2022).

    Article 

    Google Scholar 

  • Mishra, C., Redpath, S. M. & Suryawanshi, K. R. Livestock predation by snow leopards: Conflicts and the search for solutions. In Snow Leopards (eds McCarthy, T. M. & Mallon, D.) 59–67 (Academic Press, 2016).

    Chapter 

    Google Scholar 

  • Farrington, J. D., and J. Li. 2016. Climate change impacts on snow leopard range. In: McCarthy, T.M., Mallon, D., editors. Snow Leopards. Academic Press.

  • Jackson, R. Home Range, Movements and Habitat use of Snow Leopard in Nepal (Dissertation niversity of London, London, 1996).

    Google Scholar 

  • McCarthy, T. M., Fuller, T. K. & Munkhtsog, B. Movements and activities of snow leopards in Southwestern Mongolia. Biol. Cons. 124, 527–537 (2005).

    Article 

    Google Scholar 

  • Salvatori, M. et al. Co-occurrence of snow leopard, wolf and Siberian ibex under livestock encroachment into protected areas across the Mongolian Altai. Biol. Cons. 261, 109294 (2021).

    Article 

    Google Scholar 

  • Rode, J. et al. Population monitoring of snow leopards using camera trapping in Naryn state nature reserve, Kyrgyzstan, between 2016 and 2019. Global Ecol. Conserv. 31, e01850 (2021).

    Article 

    Google Scholar 

  • Sharma, R. K. et al. Spatial variation in population-density of snow leopards in a multiple use landscape in Spiti Valley Trans-Himalay. PLoS ONE 16, e0250900 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kachel, S. M., Karimov, K. & Wirsing, A. J. Predator niche overlap and partitioning and potential interactions in the mountains of Central Asia. J. Mammal. 103, 1019–1029 (2022).

    Article 

    Google Scholar 

  • Johansson, Ö., Simms, A. & McCarthy, T. M. From VHF to satellite GPS collars: Advancements in snow leopard telemetry. In Snow leopards (eds McCarthy, T. M. & Mallon, D.) p355-365 (Academic Press, 2016).

    Chapter 

    Google Scholar 

  • Johansson, Ö. et al. Snow leopard predation in a livestock dominated landscape in Mongolia. Biol. Cons. 184, 251–258 (2015).

    Article 

    Google Scholar 

  • Havmøller, R. W., Jacobsen, N. S., Scharff, N., Rovero, F. & Zimmermann, F. Assessing the activity pattern overlap among leopards (Panthera pardus), potential prey and competitors in a complex landscape in Tanzania. J. Zool. 311, 175–182 (2020).

    Article 

    Google Scholar 

  • Kitchener, A. C., Van Valkenburgh, B. & Yamaguchi, N. Felid form and function. In Biology and Conservation of Wild Felids (eds MacDonald, D. W. & Loveridge, A. J.) 83–106 (Oxford University Press, 2010).

    Google Scholar 

  • Fuglesteg, B. N., Haga, Ø. E., Folkow, L. P., Fuglei, E. & Blix, A. S. Seasonal variations in basal metabolic rate, lower critical temperature and responses to temporary starvation in the arctic fox (Alopex lagopus) from Svalbard. Polar Biol. 29, 308–319 (2005).

    Article 

    Google Scholar 

  • Doris, P. A. & Baker, M. A. Effect of dehydration on thermoregulation in cats exposed to high ambient temperatures. J. Appl. Physiol. 51, 46–54 (1981).

    Article 
    CAS 

    Google Scholar 

  • Forrest, J. L. et al. Conservation and climate change: Assessing the vulnerability of snow leopard habitat to treeline shift in the Himalaya. Biol. Cons. 150, 129–135 (2012).

    Article 

    Google Scholar 

  • Sharma, R. K., Bhatnagar, Y. V. & Mishra, C. Does livestock benefit or harm snow leopards?. Biol. Cons. 190, 8–13 (2015).

    Article 

    Google Scholar 

  • Samelius, G. et al. Keeping predators out: Testing fences to reduce livestock depredation at night-time corrals. Oryx 55, 466–472 (2021).

    Article 

    Google Scholar 

  • Hebblewhite, M. & Merrill, E. Modelling wildlife-human relationships for social species with mixed-effects resource selection models. J. Appl. Ecol. 45, 834–844 (2007).

    Article 

    Google Scholar 

  • Johansson, Ö., Malmsten, J., Mishra, C., Lkhagvajav, P. & McCarthy, T. Reversible immobilization of free-ranging snow leopards (Panthera uncia) with a combination of medetomidine and tiletamine-zolazepam. J. Wildl. Dis. 49, 338–346 (2013).

    Article 

    Google Scholar 

  • Johansson, Ö., Kachel, S. & Weckworth, B. Guidelines for telemetry studies on snow leopards. Animals 12, 1663 (2022).

    Article 

    Google Scholar 

  • Bjørneraas, K., Van Moorter, B., Rolandsen, C. M. & Herfindal, I. Screening global positioning system location data for errors using animal movement characteristics. J. Wildl. Manag. 74, 1361–1366 (2010).

    Article 

    Google Scholar 

  • Pålsson O. 2022. Maternal behaviour of the snow leopard (Panthera uncial). MSc thesis. Uppsala University, Uppsala; Sweden https://www.diva-portal.org/smash/get/diva2:1668965/FULLTEXT01.pdf.

  • du Sert, N. P. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 20. PLoS Biol. 18, e3000411 (2020).

    Article 

    Google Scholar 

  • Nygren, E. 2015. Activity patterns of snow leopards (Panthera uncia) at their kill sites. MSc thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden. https://stud.epsilon.slu.se/8109/1/nygren_e_150625.pdf.

  • Johansson, Ö. et al. Land sharing is essential for snow leopard conservation. Biol. Cons. 203, 1–7 (2016).

    Article 

    Google Scholar 

  • Johansson, Ö. et al. The timing of breeding and independence for snow leopard females and their cubs. Mamm. Biol. 101, 173–180 (2021).

    Article 

    Google Scholar 

  • Nouvellet, P., Rasmussen, G. S. A., Macdonald, D. W., Courchamp, F. & Braae, A. Noisy clocks and silent sunrises: Measurement methods of daily activity pattern. J. Zool. 286, 179–184 (2012).

    Article 

    Google Scholar 

  • Ridout, M. S. & Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 14, 322–337 (2009).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • R Development core team. 2019. R: A language and environment for statistical computing. R foundation for statistical computing Vienna, Austria. www.R-project.org/.

  • Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. Roy. Stat. Soc. B 73, 3–36 (2011).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    Billion-dollar NASA satellite will track Earth’s water

    Vulcanimicrobium alpinus gen. nov. sp. nov., the first cultivated representative of the candidate phylum “Eremiobacterota”, is a metabolically versatile aerobic anoxygenic phototroph