in

High-resolution tracking of hyrax social interactions highlights nighttime drivers of animal sociality

  • Siegel, J. M. Do all animals sleep? Trends Neurosci. 31, 208–213 (2008).

    Article 
    CAS 

    Google Scholar 

  • Lima, S. L., Rattenborg, N. C., Lesku, J. A. & Amlaner, C. J. Sleeping under the risk of predation. Anim. Behav. 70, 723–736 (2005).

    Article 

    Google Scholar 

  • Tougeron, K. & Abram, P. K. An Ecological Perspective on Sleep Disruption. Am. Nat. 190, 55–66 (2017).

    Article 

    Google Scholar 

  • Lesku, J. A., Aulsebrook, A. E., Kelly, M. L. & Tisdale, R. K. Evolution of Sleep and Adaptive Sleeplessness. Handbook of Behavioral Neuroscience vol. 30 (Elsevier B.V., 2019).

  • Smeltzer, E. A. et al. Social sleepers: The effects of social status on sleep in terrestrial mammals. Horm. Behav. 143, 105181 (2022).

    Article 
    CAS 

    Google Scholar 

  • Chu, H. S., Oh, J. & Lee, K. The Relationship between Living Arrangements and Sleep Quality in Older Adults: Gender Differences. Int. J. Environ. Res. Public Health 19, 3893 (2022).

  • Karamihalev, S., Flachskamm, C., Eren, N., Kimura, M. & Chen, A. Social context and dominance status contribute to sleep patterns and quality in groups of freely-moving mice. Sci. Rep. 9, 1–9 (2019).

    Article 
    CAS 

    Google Scholar 

  • Capellini, I., Barton, R. A., McNamara, P., Preston, B. T. & Nunn, C. L. Phylogenetic analysis of the ecology and evolution of mammalian sleep. Evolution 62, 1764–1776 (2008).

    Article 

    Google Scholar 

  • Ogawa, H., Idani, G., Moore, J., Pintea, L. & Hernandez-Aguilar, A. Sleeping Parties and nest distribution of chimpanzees in the Savanna woodland, Ugalla, Tanzania. Int. J. Primatol. 28, 1397–1412 (2007).

    Article 

    Google Scholar 

  • Mulavwa, M. N. et al. Nest groups of wild bonobos at Wamba: Selection of vegetation and tree species and relationships between nest group size and party size. Am. J. Primatol. 72, 575–586 (2010).

    Google Scholar 

  • Matsuda, I., Tuuga, A. & Higashi, S. Effects of water level on sleeping-site selection and inter-group association in proboscis monkeys: Why do they sleep alone inland on flooded days? Ecol. Res. 25, 475–482 (2010).

    Article 

    Google Scholar 

  • Schreier, A. L. & Swedell, L. Ecology and sociality in a multilevel society: Ecological determinants of spatial cohesion in hamadryas baboons. Am. J. Phys. Anthropol. 148, 580–588 (2012).

    Article 

    Google Scholar 

  • Kummer, H. & Kurt, F. Social units of free-living population of hamadryas baboons. Folia Primotol. 1, 4–19 (1963).

  • Ogawa, H. & Takahashi, H. Triadic positions of Tibetan macaques huddling at a sleeping site. Int. J. Primatol. 24, 591–606 (2002).

    Article 

    Google Scholar 

  • Snyder-Mackler, N., Beehner, J. C. & Bergman, T. J. Defining Higher Levels in the Multilevel Societies of Geladas (Theropithecus gelada). Int. J. Primatol. 33, 1054–1068 (2012).

    Article 

    Google Scholar 

  • Mochida, K. & Nishikawa, M. Sleep duration is affected by social relationships among sleeping partners in wild Japanese macaques. Behav. Process. 103, 102–104 (2014).

    Article 

    Google Scholar 

  • Di Bitetti, M. S., Vidal, E. M. L., Baldovino, M. C. & Benesovsky, V. Sleeping site preferences in tufted capuchin monkeys (Cebus apella nigritus). Am. J. Primatol. 50, 257 (2000).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/(SICI)1098-2345(200004)50:43.0.CO;2-J” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291098-2345%28200004%2950%3A4%3C257%3A%3AAID-AJP3%3E3.0.CO%3B2-J” aria-label=”Article reference 17″ data-doi=”10.1002/(SICI)1098-2345(200004)50:43.0.CO;2-J”>Article 

    Google Scholar 

  • Takahashi, H. Huddling relationships in night sleeping groups among wild Japanese macaques in Kinkazan Island during winter. Primates 38, 57–68 (1997).

    Article 

    Google Scholar 

  • Park, O., Barden, A. & Williams, E. Studies in Nocturnal Ecology, IX. Further Analysis of Activity of Panama Rain Forest Animals. Ecology 21, 122 (1940).

    Article 

    Google Scholar 

  • Gaston, K. J. Nighttime ecology: The “nocturnal problem” revisited. Am. Nat. 193, 481–502 (2019).

    Article 

    Google Scholar 

  • Börger, L. et al. Biologging Special Feature. J. Anim. Ecol. 89, 6–15 (2020).

    Article 

    Google Scholar 

  • Krause, J. et al. Reality mining of animal social systems. Trends Ecol. Evol. 28, 541–551 (2013).

    Article 

    Google Scholar 

  • Zeus, V. M., Puechmaille, S. J. & Kerth, G. Conspecific and heterospecific social groups affect each other’s resource use: a study on roost sharing among bat colonies. Anim. Behav. 123, 329–338 (2017).

    Article 

    Google Scholar 

  • Wey, T. W., Burger, J. R., Ebensperger, L. A. & Hayes, L. D. Reproductive correlates of social network variation in plurally breeding degus (Octodon degus). Anim. Behav. 85, 1407–1414 (2013).

    Article 

    Google Scholar 

  • Hirsch, B. T., Prange, S., Hauver, S. A. & Gehrt, S. D. Genetic relatedness does not predict racoon social network structure. Anim. Behav. 85, 463–470 (2013).

    Article 

    Google Scholar 

  • Robitaille, A. L., Webber, Q. M. R., Turner, J. W. & Wal Eric, V. The problem and promise of scale in multilayer animal social networks. Curr. Zool. 67, 113–123 (2021).

    Article 

    Google Scholar 

  • Smith, J. E. et al. Split between two worlds: Automated sensing reveals links between above- and belowground social networks in a free-living mammal. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170249 (2018).

  • Silk, M. J. et al. Seasonal variation in daily patterns of social contacts in the European badger Meles meles. Ecol. Evol. 7, 9006–9015 (2017).

    Article 

    Google Scholar 

  • Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).

    Article 
    CAS 

    Google Scholar 

  • Barry, R. E. & Mundy, P. J. Seasonal variation in the degree of heterospecific association of two syntopic hyraxes (Heterohyrax brucei and Procavia capensis) exhibiting synchronous parturition. Behav. Ecol. Sociobiol. 52, 177–181 (2002).

    Article 

    Google Scholar 

  • Barocas, A., Ilany, A., Koren, L., Kam, M. & Geffen, E. Variance in centrality within rock hyrax social networks predicts adult longevity. PLoS ONE 6, 1–8 (2011).

    Article 

    Google Scholar 

  • Ilany, A., Barocas, A., Koren, L., Kam, M. & Geffen, E. Structural balance in the social networks of a wild mammal. Anim. Behav. 85, 1397–1405 (2013).

    Article 

    Google Scholar 

  • Gravett, N., Bhagwandin, A., Lyamin, O. I., Siegel, M. & Manger, P. R. Sleep in the Rock Hyrax, Procavia capensis. Brain Behav. Evol. 79, 155–169 (2012).

  • Coe, M. J. Notes on the habits of the mount kenya hyrax (Procavia johnstoni mackinderi thomas). Proc. Zool. Soc. Lond. 138, 638–644 (1961).

    Google Scholar 

  • Viblanc, V. A., Pasquaretta, C., Sueur, C., Boonstra, R. & Dobson, F. S. Aggression in Columbian ground squirrels: relationships with age, kinship, energy allocation, and fitness. Behav. Ecol. 27, arw098 (2016).

    Article 

    Google Scholar 

  • Wolf, J. B. W., Mawdsley, D., Trillmich, F. & James, R. Social structure in a colonial mammal: unravelling hidden structural layers and their foundations by network analysis. Anim. Behav. 74, 1293–1302 (2007).

    Article 

    Google Scholar 

  • Podgórski, T., Lusseau, D., Scandura, M., Sönnichsen, L. & Jȩdrzejewska, B. Long-lasting, kin-directed female interactions in a spatially structured wild boar social network. PLoS ONE 9, 1–11 (2014).

    Article 

    Google Scholar 

  • Druce, D. J. et al. Scale-dependent foraging costs: Habitat use by rock hyraxes (Procavia capensis) determined using giving-up densities. Oikos 115, 513–525 (2006).

    Article 

    Google Scholar 

  • Goll, Y. et al. Sex-associated and context-dependent leadership in the rock hyrax. iScience 104063 https://doi.org/10.1016/j.isci.2022.104063 (2022).

  • Kelley, J. L., Morrell, L. J., Inskip, C., Krause, J. & Croft, D. P. Predation risk shapes social networks in fission-fusion populations. PLoS One 6, e24280 (2011).

    Article 
    CAS 

    Google Scholar 

  • Brown, K. J. Seasonal variation in the thermal biology of the rock hyrax (Procavia capensis) (Document N° 10413/10124) [Master Dissertation, University of KwaZulu-Natal]. ResearchSpace Digital Library for UKZN scholarly research. http://hdl.handle.net/10413/10124.

  • Bar Ziv, E. et al. Individual, social, and sexual niche traits affect copulation success in a polygynandrous mating system. Behav. Ecol. Sociobiol. 70, 901–912 (2016).

    Article 

    Google Scholar 

  • McDonald, G. C., Spurgin, L. G., Fairfield, E. A., Richardson, D. S. & Pizzari, T. Differential female sociality is linked with the fine-scale structure of sexual interactions in replicate groups of red junglefowl, Gallus gallus. Proc. R. Soc. B Biol. Sci. 286, 20191734 (2019).

  • Stanley, C. R., Liddiard Williams, H. & Preziosi, R. F. Female clustering in cockroach aggregations—A case of social niche construction? Ethology 124, 706–718 (2018).

    Article 

    Google Scholar 

  • Pilastro, A., Benetton, S. & Bisazza, A. Female aggregation and male competition reduce costs of sexual harassment in the mosquitofish Gambusia holbrooki. Anim. Behav. 65, 1161–1167 (2003).

    Article 

    Google Scholar 

  • Schoepf, I. & Schradin, C. Better off alone! Reproductive competition and ecological constraints determine sociality in the African striped mouse (Rhabdomys pumilio). J. Anim. Ecol. 81, 649–656 (2012).

    Article 

    Google Scholar 

  • Brent, L. J. N., MacLarnon, A., Platt, M. L. & Semple, S. Seasonal changes in the structure of rhesus macaque social networks. Behav. Ecol. Sociobiol. 67, 349–359 (2013).

    Article 

    Google Scholar 

  • Sundaresan, S. R., Fischhoff, I. R., Dushoff, J. & Rubenstein, D. I. Network metrics reveal differences in social organization between two fission-fusion species, Grevy’s zebra and onager. Oecologia 151, 140–149 (2007).

    Article 

    Google Scholar 

  • Hasenjager, M. J. & Dugatkin, L. A. Fear of predation shapes social network structure and the acquisition of foraging information in guppy shoals. Proc. R. Soc. B Biol. Sci. 284, 20172020 (2017).

  • Heathcote, R. J. P., Darden, S. K., Franks, D. W., Ramnarine, I. W. & Croft, D. P. Fear of predation drives stable and differentiated social relationships in guppies. Sci. Rep. 7, 1–10 (2017).

    Article 

    Google Scholar 

  • Dunbar, R. I. M. Social structure as a strategy to mitigate the costs of group living: a comparison of gelada and guereza monkeys. Anim. Behav. 136, 53–64 (2018).

    Article 
    CAS 

    Google Scholar 

  • Sutcliffe, A., Dunbar, R., Binder, J. & Arrow, H. Relationships and the social brain: Integrating psychological and evolutionary perspectives. Br. J. Psychol. 103, 149–168 (2012).

    Article 

    Google Scholar 

  • Brown, M. R. Comparing the Fission-Fusion Dynamics of Spider Monkeys (Ateles geoffroyi) From Day to Night. https://doi.org/10.11575/PRISM/25371 (2014).

  • Fanson, K. V., Fanson, B. G. & Brown, J. S. Using path analysis to explore vigilance behavior in the rock hyrax (Procavia capensis). J. Mammal. 92, 78–85 (2011).

    Article 

    Google Scholar 

  • Santema, P. & Clutton-Brock, T. Meerkat helpers increase sentinel behaviour and bipedal vigilance in the presence of pups. Anim. Behav. 85, 655–661 (2013).

    Article 

    Google Scholar 

  • Wright, J., Berg, E., De Kort, S. R., Khazin, V. & Maklakov, A. A. Cooperative sentinel behaviour in the Arabian babbler. Anim. Behav. 62, 973–979 (2001).

    Article 

    Google Scholar 

  • Moscovice, L. R., Sueur, C. & Aureli, F. How socio-ecological factors influence the differentiation of social relationships: An integrated conceptual framework. Biol. Lett. 16, 20200384 (2020).

  • Kotler, B. P., Brown, J. S. & Knight, M. H. Habitat and patch use by hyraxes: There’s no place like home? Ecol. Lett. 2, 82–88 (1999).

    Article 

    Google Scholar 

  • Margolis, E. Dietary composition of the wolf Canis lupus in the Ein Gedi area according to analysis of their droppings (in Hebrew). In Proceedings of 45th Meeting of the Israel Zoological Society, Isr. J. Ecol. Evol. 55, 157–180 (2008).

  • Firth, J. A. & Sheldon, B. C. Social carry-over effects underpin trans-seasonally linked structure in a wild bird population. Ecol. Lett. 19, 1324–1332 (2016).

    Article 

    Google Scholar 

  • Olds, N. & Shoshani, J. Procavia capensis. Mammalian Species 171, 1–7 (2016).

  • Fourie, L. J. & Perrin, M. R. Social behaviour and spatial relationships of the rock hyrax. South 17, 91–98 (1987).

  • Montiglio, P.-O., Ferrari, C. & Réale, D. Social niche specialization under constraints: Personality, social interactions and environmental heterogeneity. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120343 (2013).

    Article 

    Google Scholar 

  • Dunbar, R. I. M. Time: a hidden constraint on the behavioural ecology of baboons. Behav. Ecol. Sociobiol. 31, 35–49 (1992).

    Article 

    Google Scholar 

  • Dunbar, R. I. M., Korstjens, A. H. & Lehmann, J. Time as an ecological constraint. Biol. Rev. 84, 413–429 (2009).

    Article 
    CAS 

    Google Scholar 

  • Zahavi, A. Arabian babbler. In Cooperative Breeding in Birds (eds. Staceyp, B. & Koenigw, D.) 103-130 (Cambridge University Press, 1990).

  • Smith, J. E. et al. Greetings promote cooperation and reinforce social bonds among spotted hyenas. Anim. Behav. 81, 401–415 (2011).

    Article 

    Google Scholar 

  • Aureli, F. & Schaffner, C. M. Aggression and conflict management at fusion in spider monkeys. Biol. Lett. 3, 147–149 (2007).

    Article 

    Google Scholar 

  • Deag, J. M. The diurnal patterns of behaviour of the wild Barbary macaque Macaca sylvanus. J. Zool. 206, 403–413 (1985).

    Article 

    Google Scholar 

  • Canteloup, C., Cera, M. B., Barrett, B. J. & van de Waal, E. Processing of novel food reveals payoff and rank-biased social learning in a wild primate. Sci. Rep. 11, 1–13 (2021).

    Article 

    Google Scholar 

  • Dragić, N., Keynan, O. & Ilany, A. Multilayer social networks reveal the social complexity of a cooperatively breeding bird. iScience 24, 103336 (2021).

  • Kulahci, I. G., Ghazanfar, A. A. & Rubenstein, D. I. Knowledgeable Lemurs Become More Central in Social Networks. Curr. Biol. 28, 1306–1310.e2 (2018).

    Article 
    CAS 

    Google Scholar 

  • Schino, G. Grooming and agonistic support: A meta-analysis of primate reciprocal altruism. Behav. Ecol. 18, 115–120 (2007).

    Article 

    Google Scholar 

  • Kutsukake, N. & Clutton-Brock, T. H. Social functions of allogrooming in cooperatively breeding meerkats. Anim. Behav. 72, 1059–1068 (2006).

    Article 

    Google Scholar 

  • Schweinfurth, M. K., Stieger, B. & Taborsky, M. Experimental evidence for reciprocity in allogrooming among wild-type Norway rats. Sci. Rep. 7, 1–8 (2017).

    Article 
    CAS 

    Google Scholar 

  • Nandini, S., Keerthipriya, P. & Vidya, T. N. C. Group size differences may mask underlying similarities in social structure: A comparison of female elephant societies. Behav. Ecol. 29, 145–159 (2018).

    Article 

    Google Scholar 

  • Hamede, R. K., Bashford, J., McCallum, H. & Jones, M. Contact networks in a wild Tasmanian devil (Sarcophilus harrisii) population: using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease. Ecol. Lett. 12, 1147–1157 (2009).

    Article 

    Google Scholar 

  • Henkel, S., Heistermann, M. & Fischer, J. Infants as costly social tools in male Barbary macaque networks. Anim. Behav. 79, 1199–1204 (2010).

    Article 

    Google Scholar 

  • Prehn, S. G. et al. Seasonal variation and stability across years in a social network of wild giraffe. Anim. Behav. 157, 95–104 (2019).

    Article 

    Google Scholar 

  • Borgeaud, C., Sosa, S., Sueur, C. & Bshary, R. The influence of demographic variation on social network stability in wild vervet monkeys. Anim. Behav. 134, 155–165 (2017).

    Article 

    Google Scholar 

  • Kerth, G., Perony, N. & Schweitzer, F. Bats are able to maintain long-term social relationships despite the high fission-fusion dynamics of their groups. Proc. R. Soc. B 278, 2761–2767 (2011).

    Article 

    Google Scholar 

  • Silk, J. B. et al. The benefits of social capital: Close social bonds among female baboons enhance offspring survival. Proc. R. Soc. B Biol. Sci. 276, 3099–3104 (2009).

    Article 

    Google Scholar 

  • Riehl, C. & Strong, M. J. Stable social relationships between unrelated females increase individual fitness in a cooperative bird. Proc. R. Soc. B Biol. Sci. 285, 20180130 (2018).

  • Shizuka, D. & Johnson, A. E. How demographic processes shape animal social networks. Behav. Ecol. 31, 1–11 (2020).

    Article 

    Google Scholar 

  • Sick, C. et al. Evidence for varying social strategies across the day in chacma baboons. Biol. Lett. 10, 3–6 (2014).

    Article 

    Google Scholar 

  • Barrett, L., Peter Henzi, S. & Lusseau, D. Taking sociality seriously: The structure of multi-dimensional social networks as a source of information for individuals. Philos. Trans. R. Soc. B Biol. Sci. 367, 2108–2118 (2012).

    Article 

    Google Scholar 

  • Henzi, S. P., Lusseau, D., Weingrill, T., Van Schaik, C. P. & Barrett, L. Cyclicity in the structure of female baboon social networks. Behav. Ecol. Sociobiol. 63, 1015–1021 (2009).

    Article 

    Google Scholar 

  • Ripperger, S. P. & Carter, G. G. Social foraging in vampire bats is predicted by long-term cooperative relationships. PLoS Biol. 19, 1–17 (2021).

    Article 

    Google Scholar 

  • Wittemyer, G., Douglas-Hamilton, I. & Getz, W. M. The socioecology of elephants: analysis of the processes creating multitiered social structures. Anim. Behav. 69, 1357–1371 (2005).

    Article 

    Google Scholar 

  • Wittemyer, G., Getz, W. M., Vollrath, F. & Douglas-Hamilton, I. Social dominance, seasonal movements, and spatial segregation in African elephants: A contribution to conservation behavior. Behav. Ecol. Sociobiol. 61, 1919–1931 (2007).

    Article 

    Google Scholar 

  • Gelardi, V., Fagot, J., Barrat, A. & Claidière, N. Detecting social (in)stability in primates from their temporal co-presence network. Anim. Behav. 157, 239–254 (2019).

    Article 

    Google Scholar 

  • Hobson, E. A., Ferdinand, V., Kolchinsky, A. & Garland, J. Rethinking animal social complexity measures with the help of complex systems concepts. Anim. Behav. 155, 287–296 (2019).

    Article 

    Google Scholar 

  • Kappeler, P. M. A framework for studying social complexity. Behav. Ecol. Sociobiol. 73, 13 (2019).

  • Ballerini, M. et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proc. Natl Acad. Sci. USA 105, 1232–1237 (2008).

    Article 
    CAS 

    Google Scholar 

  • Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S. & Camazine, S. Self-organization in social insects. Trends Ecol. Evol. 12, 188–193 (1997).

    Article 
    CAS 

    Google Scholar 

  • Wickramasinghe, A. & Muthukumarana, S. Assessing the impact of the density and sparsity of the network on community detection using a Gaussian mixture random partition graph generator. Int. J. Inf. Technol. 14, 607–618 (2022).

    Google Scholar 

  • Motalebi, N., Stevens, N. T. & Steiner, S. H. Hurdle Blockmodels for Sparse Network Modeling. Am. Stat. 75, 383–393 (2021).

    Article 

    Google Scholar 

  • Gokcekus, S., Cole, E. F., Sheldon, B. C. & Firth, J. A. Exploring the causes and consequences of cooperative behaviour in wild animal populations using a social network approach. Biol. Rev. 96, 2355–2372 (2021).

    Article 

    Google Scholar 

  • Koren, L., Mokady, O. & Geffen, E. Social status and cortisol levels in singing rock hyraxes. Horm. Behav. 54, 212–216 (2008).

    Article 
    CAS 

    Google Scholar 

  • Boyland, N. K., James, R., Mlynski, D. T., Madden, J. R. & Croft, D. P. Spatial proximity loggers for recording animal social networks: Consequences of inter-logger variation in performance. Behav. Ecol. Sociobiol. 67, 1877–1890 (2013).

    Article 

    Google Scholar 

  • Drewe, J. A. et al. Performance of proximity loggers in recording Intra- and Inter-species interactions: A laboratory and field-based validation study. PLoS ONE 7, e39068 (2012).

  • Hoppitt, W. & Farine, D. Association Indices For Quantifying Social Relationships: How To Deal With Missing Observations Of Individuals Or Groups. Anim. Behav. 136, 227–238 (2018).

    Article 

    Google Scholar 

  • Farine, D. R. Animal social network inference and permutations for ecologists in R using asnipe. Methods Ecol. Evol. 4, 1187–1194 (2013).

  • Bejder, L., Fletcher, D. & Bräger, S. A method for testing association patterns of social animals. Anim. Behav. 56, 719–725 (1998).

    Article 
    CAS 

    Google Scholar 

  • Kalinka, A. T. & Tomancak, P. linkcomm: An R package for the generation, visualization, and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011–2012 (2011).

    Article 
    CAS 

    Google Scholar 

  • R Core Team, R. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).

  • Wild, F. lsa: Latent Semantic Analysis. R package version 0.73.2. https://CRAN.R-project.org/package=lsa (2020).

  • Han, J., Kamber, M. & Pei, J. Getting to Know Your Data. An R Companion Third Ed. Fundam. Polit. Sci. Res. https://doi.org/10.1016/B978-0-12-381479-1.00002-2 (2021).

  • Benjamini, Y. Controlling the false discovery rate – A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    Google Scholar 

  • Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal, Complex Syst. 1695, 1–9 (2006).

  • Dai, H., Leeder, J. S. & Cui, Y. A modified generalized fisher method for combining probabilities from dependent tests. Front. Genet. 20, 2–7 (2014).

    Google Scholar 


  • Source: Ecology - nature.com

    Billion-dollar NASA satellite will track Earth’s water

    Vulcanimicrobium alpinus gen. nov. sp. nov., the first cultivated representative of the candidate phylum “Eremiobacterota”, is a metabolically versatile aerobic anoxygenic phototroph