in

Thermal physiology integrated species distribution model predicts profound habitat fragmentation for estuarine fish with ocean warming

  • Reygondeau, G. & Beaugrand, G. Future climate-driven shifts in distribution of Calanus finmarchicus. Glob. Change Biol. 17, 756–766 (2011).

    Article 
    ADS 

    Google Scholar 

  • Grieve, B. D., Hare, J. A. & Saba, V. S. Projecting the effects of climate change on Calanus finmarchicus distribution within the U.S. Northeast Continental Shelf. Sci. Rep. 7, 6264 (2017).

    Article 
    ADS 

    Google Scholar 

  • Bosso, L. et al. The rise and fall of an alien: Why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biol. Invasions 24, 3169–3187 (2022).

    Article 

    Google Scholar 

  • Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).

    Article 

    Google Scholar 

  • Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).

    Article 

    Google Scholar 

  • Kaschner, K., Watson, R., Trites, A. W. & Pauly, D. Mapping world-wide distributions of marine mammal species using a relative environmental suitability (RES) model. Mar. Ecol. Prog. Ser. 316, 285–310 (2006).

    Article 
    ADS 

    Google Scholar 

  • Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12, 361–371 (2003).

    Article 

    Google Scholar 

  • Buckley, L. B. Linking traits to energetics and population dynamics to predict lizard ranges in changing environments. Am. Nat. 171, E1–E19 (2008).

    Article 

    Google Scholar 

  • Kolbe, J. J., Kearney, M. & Shine, R. Modeling the consequences of thermal trait variation for the cane toad invasion of Australia. Ecol. Appl. 20, 2273–2285 (2010).

    Article 

    Google Scholar 

  • Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Ann. Rev. Mar. Sci. 3, 509–535 (2011).

    Article 

    Google Scholar 

  • Somero, G. N., Lockwood, B. L. & Tomanek, L. Biochemical Adaptation: Response to Environmental Challenges, From Life’s Origins to the Anthropocene (Sinauer Associates, 2017).

    Google Scholar 

  • Kuo, E. S. & Sanford, E. Geographic variation in the upper thermal limits of an intertidal snail: Implications for climate envelope models. Mar. Ecol. Prog. Ser. 388, 137–146 (2009).

    Article 
    ADS 

    Google Scholar 

  • Smeraldo, S. et al. Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential distribution models: lessons from bats. Biodivers. Conserv. 27, 2425–2441 (2018).

    Article 

    Google Scholar 

  • Gamliel, I. et al. Incorporating physiology into species distribution models moderates the projected impact of warming on selected Mediterranean marine species. Ecography 43, 1090–1106 (2020).

    Article 

    Google Scholar 

  • Kearney, M. R., Wintle, B. A. & Porter, W. P. Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conserv. Lett. 3, 203–213 (2010).

    Article 

    Google Scholar 

  • Buckley, L. B., Waaser, S. A., MacLean, H. J. & Fox, R. Does including physiology improve species distribution model predictions of responses to recent climate change?. Ecology 92, 2214–2221 (2011).

    Article 

    Google Scholar 

  • Fry, F. E. J. Effects of the environment on animal activity. Pub. Ontario Fish. Lab. No. 68. Toronto Studies Biol. Ser. 55, 1–52 (1947).

    Google Scholar 

  • Brett, J. R. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerkd). Am Zoologist 11, 99–113 (1971).

    Article 

    Google Scholar 

  • Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).

    Article 
    ADS 

    Google Scholar 

  • Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).

    Article 

    Google Scholar 

  • Eliason, E. J. et al. Differences in thermal tolerance among sockeye salmon populations. Science 332, 109–112 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Donelson, J. M., Munday, P. L., McCormick, M. I. & Pitcher, C. R. Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat. Clim. Change 2, 30–32 (2012).

    Article 
    ADS 

    Google Scholar 

  • Pörtner, H. Climate change and temperature-dependent biogeography: Oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146 (2001).

    Article 
    ADS 

    Google Scholar 

  • Pörtner, H.-O. Oxygen-and capacity-limitation of thermal tolerance: A matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010).

    Article 

    Google Scholar 

  • Clark, T. D., Sandblom, E. & Jutfelt, F. Response to Farrell and to Pörtner and Giomi. J. Exp. Biol. 216, 4495–4497 (2013).

    Article 

    Google Scholar 

  • Farrell, A. P. Aerobic scope and its optimum temperature: Clarifying their usefulness and limitations: Correspondence on J. Exp. Biol. 216, 2771–2782. J. Exp. Biol. 216, 4493–4494 (2013).

    Article 

    Google Scholar 

  • Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O. & Huey, R. B. Climate change tightens a metabolic constraint on marine habitats. Science 348, 1132–1135 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article 

    Google Scholar 

  • Clarke, A. Is there a universal temperature dependence of metabolism?. Funct. Ecol. 18, 252–256 (2004).

    Article 

    Google Scholar 

  • Clarke, A. & Fraser, K. P. P. Why does metabolism scale with temperature?. Funct. Ecol. 18, 243–251 (2004).

    Article 

    Google Scholar 

  • Fangue, N. A., Hofmeister, M. & Schulte, P. M. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus. J. Exp. Biol. 209, 2859–2872 (2006).

    Article 
    CAS 

    Google Scholar 

  • Dhillon, R. S. & Schulte, P. M. Intraspecific variation in the thermal plasticity of mitochondria in killifish. J. Exp. Biol. 214, 3639–3648 (2011).

    Article 
    CAS 

    Google Scholar 

  • Fangue, N. A., Podrabsky, J. E., Crawshaw, L. I. & Schulte, P. M. Countergradient variation in temperature preference in populations of killifish Fundulus heteroclitus. Physiol. Biochem. Zool. 82, 776–786 (2009).

    Article 

    Google Scholar 

  • Healy, T. M. & Schulte, P. M. Thermal acclimation is not necessary to maintain a wide thermal breadth of aerobic scope in the common killifish (Fundulus heteroclitus). Physiol. Biochem. Zool. 85, 107–119 (2012).

    Article 
    CAS 

    Google Scholar 

  • Chust, G. et al. Are Calanus spp. shifting poleward in the North Atlantic? A habitat modelling approach. ICES J. Mar. Sci. 71, 241–253 (2014).

    Article 

    Google Scholar 

  • Norin, T., Malte, H. & Clark, T. D. Aerobic scope does not predict the performance of a tropical eurythermal fish at elevated temperatures. J. Exp. Biol. 217, 244–251 (2014).

    Google Scholar 

  • Payne, N. L. et al. Temperature dependence of fish performance in the wild: links with species biogeography and physiological thermal tolerance. Funct. Ecol. 30, 903–912 (2016).

    Article 

    Google Scholar 

  • Raffel, T. R. et al. Disease and thermal acclimation in a more variable and unpredictable climate. Nat. Clim. Change 3, 146–151 (2013).

    Article 
    ADS 

    Google Scholar 

  • Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?. Ecol. Lett. 19, 1372–1385 (2016).

    Article 

    Google Scholar 

  • Dahlke, F. T. et al. Northern cod species face spawning habitat losses if global warming exceeds 1.5°C. Sci. Adv. 4, 8821 (2018).

    Article 
    ADS 

    Google Scholar 

  • Pörtner, H.-O. & Giomi, F. Nothing in experimental biology makes sense except in the light of ecology and evolution: Correspondence on J. Exp. Biol. 2771-2782. J. Exp. Biol. 216, 4494–4495 (2013).

    Article 

    Google Scholar 

  • Pörtner, H.-O. How and how not to investigate the oxygen and capacity limitation of thermal tolerance (OCLTT) and aerobic scope: Remarks on the article by Gräns et al. J. Exp. Biol. 217, 4432–4433 (2014).

    Article 

    Google Scholar 

  • Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932).

    Article 
    CAS 

    Google Scholar 

  • Killen, S. S., Atkinson, D. & Glazier, D. S. The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature. Ecol. Lett. 13, 184–193 (2010).

    Article 

    Google Scholar 

  • Norin, T. & Gamperl, A. K. Metabolic scaling of individuals vs. populations: Evidence for variation in scaling exponents at different hierarchical levels. Funct. Ecol. 32, 379–388 (2018).

    Article 

    Google Scholar 

  • Jayasundara, N., Kozal, J. S., Arnold, M. C., Chan, S. S. L. & Giulio, R. T. D. High-throughput tissue bioenergetics analysis reveals identical metabolic allometric scaling for teleost hearts and whole organisms. PLoS ONE 10, e0137710 (2015).

    Article 

    Google Scholar 

  • Kinnison, M. T., Unwin, M. J. & Quinn, T. P. Migratory costs and contemporary evolution of reproductive allocation in male chinook salmon. J. Evol. Biol. 16, 1257–1269 (2003).

    Article 
    CAS 

    Google Scholar 

  • Clarke, A. & Johnston, N. M. Scaling of metabolic rate with body mass and temperature in teleost fish. J. Anim. Ecol. 68, 893–905 (1999).

    Article 

    Google Scholar 

  • Duvernell, D. D., Lindmeier, J. B., Faust, K. E. & Whitehead, A. Relative influences of historical and contemporary forces shaping the distribution of genetic variation in the Atlantic killifish, Fundulus heteroclitus. Mol. Ecol. 17, 1344–1360 (2008).

    Article 

    Google Scholar 

  • Navarro-Racines, C., Tarapues, J., Thornton, P., Jarvis, A. & Ramirez-Villegas, J. High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Sci. Data 7, 1–14 (2020).

    Article 

    Google Scholar 

  • Franke, R. Scattered data interpolation: Tests of some methods. Math. Comput. 38, 181–200 (1982).

    MathSciNet 
    MATH 

    Google Scholar 

  • Levitus, S. et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 39, 15. https://doi.org/10.1029/2012GL051106 (2012).

    Article 

    Google Scholar 

  • Kaschner, K. et al. AquaMaps: Predicted Range Maps for Aquatic Species (Worldwide Web Electronic Publication, 2019).

    Google Scholar 

  • Jayasundara, N. Ecological significance of mitochondrial toxicants. Toxicology 391, 64–74 (2017).

    Article 
    CAS 

    Google Scholar 

  • Beers, J. M. & Jayasundara, N. Antarctic notothenioid fish: what are the future consequences of ‘losses’ and ‘gains’ acquired during long-term evolution at cold and stable temperatures?. J. Exp. Biol. 218, 1834–1845 (2015).

    Article 

    Google Scholar 

  • Lear, K. O. et al. Thermal performance responses in free-ranging elasmobranchs depend on habitat use and body size. Oecologia 191, 829–842 (2019).

    Article 
    ADS 

    Google Scholar 

  • Good, S. et al. The current configuration of the OSTIA system for operational production of foundation sea surface temperature and ice concentration analyses. Remote Sens. 12, 720 (2020).

    Article 
    ADS 

    Google Scholar 

  • Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2014).

    Google Scholar 

  • Ready, J. et al. Predicting the distributions of marine organisms at the global scale. Ecol. Model. 221, 467–478 (2010).

    Article 

    Google Scholar 

  • Pawlowicz, R. M_Map: A Mapping Package for MATLAB, Version 1.4 m. Computer Software, UBC EOAS. https://www.eoas.ubc.ca/rich/map.html (2020).

  • Schulzweida, U., Kornblueh, L. & Quast, R. CDO User’s Guide. Climate Data Operators, Version 1, (2006).

  • Nychka, D., Furrer, R., Paige, J. & Sain, S. Fields: Tools for Spatial Data. R Package Version 11.6. (2017).

  • Chen, Z., Farrell, A. P., Matala, A. & Narum, S. R. Mechanisms of thermal adaptation and evolutionary potential of conspecific populations to changing environments. Mol. Ecol. 27, 659–674 (2018).

    Article 

    Google Scholar 

  • da Silva, C. R. B., Riginos, C. & Wilson, R. S. An intertidal fish shows thermal acclimation despite living in a rapidly fluctuating environment. J. Comp. Physiol. B. 189, 385–398 (2019).

    Article 

    Google Scholar 

  • Slesinger, E. et al. The effect of ocean warming on black sea bass (Centropristis striata) aerobic scope and hypoxia tolerance. PLoS ONE 14, e0218390 (2019).

    Article 
    CAS 

    Google Scholar 

  • Moffett, E. R., Fryxell, D. C., Palkovacs, E. P., Kinnison, M. T. & Simon, K. S. Local adaptation reduces the metabolic cost of environmental warming. Ecology 99, 2318–2326 (2018).

    Article 

    Google Scholar 

  • Turker, H. The effect of water temperature on standard and routine metabolic rate in two different sizes of Nile tilapia. Kafkas Universitesi Veteriner Fakultesi Dergisi 17, 575–580 (2011).

    Google Scholar 

  • Hvas, M., Folkedal, O., Imsland, A. & Oppedal, F. The effect of thermal acclimation on aerobic scope and critical swimming speed in Atlantic salmon, Salmo salar. J. Exp. Biol. 220, 2757–2764 (2017).

    Google Scholar 

  • Ohlberger, J., Mehner, T., Staaks, G. & Hölker, F. Intraspecific temperature dependence of the scaling of metabolic rate with body mass in fishes and its ecological implications. Oikos 121, 245–251 (2012).

    Article 

    Google Scholar 

  • Kunz, K. L. et al. New encounters in Arctic waters: A comparison of metabolism and performance of polar cod (Boreogadus saida) and Atlantic cod (Gadus morhua) under ocean acidification and warming. Polar Biol. 39, 1137–1153 (2016).

    Article 

    Google Scholar 

  • Norin, T., Bailey, J. A. & Gamperl, A. K. Thermal biology and swimming performance of Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus). PeerJ 7, e7784 (2019).

    Article 

    Google Scholar 

  • Nowell, L. B. et al. Swimming energetics and thermal ecology of adult bonefish (Albula vulpes): A combined laboratory and field study in Eleuthera, The Bahamas. Environ. Biol. Fishes 98, 2133–2146 (2015).

    Article 

    Google Scholar 

  • Pang, X., Yuan, X.-Z., Cao, Z.-D., Zhang, Y.-G. & Fu, S.-J. The effect of temperature on repeat swimming performance in juvenile qingbo (Spinibarbus sinensis). Fish Physiol. Biochem. 41, 19–29 (2015).

    Article 
    CAS 

    Google Scholar 

  • Schwieterman, G. D. et al. Metabolic Rates and Hypoxia Tolerences of clearnose skate (Rostaraja eglanteria), summer flounder (Paralichthys dentatus), and thorny skate (Amblyraja radiata). Biology 8, 56 (2019).

    Article 
    CAS 

    Google Scholar 

  • Xie, H. et al. Effects of acute temperature change and temperature acclimation on the respiratory metabolism of the snakehead. Turk. J. Fish. Aquat. Sci. 17, 535–542 (2017).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Improving access to aquatic foods

    Biodiversity stabilizes plant communities through statistical-averaging effects rather than compensatory dynamics